Verifying Mutable Systems

dc.contributor.authorScott, Joseph
dc.date.accessioned2017-10-23T14:36:01Z
dc.date.available2017-10-23T14:36:01Z
dc.date.issued2017-10-23
dc.date.submitted2017-09-27
dc.description.abstractModel checking has had much success in the verification of single-process and multi-process programs. However, model checkers assume an immutable topology which limits the verification in several areas. Consider the security domain, model checkers have had success in the verification of unicast structurally static protocols, but struggle to verify dynamic multicast cryptographic protocols. We give a formulation of dynamic model checking which extends traditional model checking by allowing structural changes, mutations, to the topology of multi-process network models. We introduce new mutation models when the structural mutations take either a primitive, non-primitive, or a non-deterministic form, and analyze the general complexities of each. This extends traditional model checking and allows analysis in new areas. We provide a set of proof rules to verify safety properties on dynamic models and outline its automizability. We relate dynamic models to compositional reasoning, dynamic cutoffs, parametrized analysis, and previously established parametric assertions.We provide a proof of concept by analyzing a dynamic mutual exclusion protocol and a multicast cryptography protocol.en
dc.identifier.urihttp://hdl.handle.net/10012/12564
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectModel Checkingen
dc.subjectComputer Aided Verificationen
dc.subjectDynamic Analysisen
dc.subjectSecurityen
dc.titleVerifying Mutable Systemsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorTrefler, Richard
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
scott_joseph.pdf
Size:
817.62 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: