UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Strain engineering and bioprocessing strategies for biobased production of porphobilinogen in Escherichia coli

Loading...
Thumbnail Image

Date

2022-01-04

Authors

Lall, Davinder

Advisor

Chou, C.Perry
Young, Murray Moo

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Strain engineering and bioprocessing strategies were applied for biobased production of porphobilinogen (PBG) using Escherichia coli as the cell factory. The non-native Shemin/C4 pathway was first implemented by heterologous expression of hemA from Rhodopseudomonas spheroids to supply carbon flux from the natural tricarboxylic acid (TCA) pathways for PBG biosynthesis via succinyl-CoA. Metabolic strategies were then applied for carbon flux direction from the TCA pathways to the C4 pathway. To promote PBG stability and accumulation, Clustered Regularly Interspersed Short Palindromic Repeats interference (CRISPRi) was applied to repress hemC expression and, therefore, reduce carbon flowthrough toward porphyrin biosynthesis with minimal impact to cell physiology. To further enhance PBG biosynthesis and accumulation under the hemC-repressed genetic background, we further heterologously expressed native E. coli hemB. Using these engineered E. coli strains for bioreactor cultivation based on ~30 g L-1 glycerol, we achieved high PBG titers up to 209 mg L-1, representing 1.73% of the theoretical PBG yield, with improved PBG stability and accumulation. Potential biochemical, genetic, and metabolic factors limiting PBG production were systematically identified for characterization.

Description

Keywords

Porphobilinogen, Escherichia Coli, TCA cycle, Succinyl-CoA, Glycerol, CRISPRi, Shemin/C4 pathway

LC Subject Headings

Citation