Approximate Private Quantum Channels

dc.contributor.authorDickinson, Paulen
dc.date.accessioned2007-05-08T14:01:52Z
dc.date.available2007-05-08T14:01:52Z
dc.date.issued2006en
dc.date.submitted2006en
dc.description.abstractThis thesis includes a survey of the results known for private and approximate private quantum channels. We develop the best known upper bound for &epsilon;-randomizing maps, <em>n</em> + 2log(1/&epsilon;) + <em>c</em> bits required to &epsilon;-randomize an arbitrary <em>n</em>-qubit state by improving a scheme of Ambainis and Smith [5] based on small bias spaces [16, 3]. We show by a probabilistic argument that in fact the great majority of random schemes using slightly more than this many bits of key are also &epsilon;-randomizing. We provide the first known nontrivial lower bound for &epsilon;-randomizing maps, and develop several conditions on them which we hope may be useful in proving stronger lower bounds in the future.en
dc.formatapplication/pdfen
dc.format.extent367669 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/2944
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.rightsCopyright: 2006, Dickinson, Paul. All rights reserved.en
dc.subjectMathematicsen
dc.subjectquantumen
dc.subjectapproximateen
dc.subjectrandomizationen
dc.subjectcryptographyen
dc.subjectsmall biasen
dc.subjectepsilon-randomizeen
dc.subjectindependent spaceen
dc.titleApproximate Private Quantum Channelsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
padickin2006.pdf
Size:
359.05 KB
Format:
Adobe Portable Document Format