Targeting novel soil glycosyl hydrolases by combining stable isotope probing and metagenomics

dc.contributor.authorVerastegui Pena, Yris Milusqui
dc.date.accessioned2014-02-25T15:10:57Z
dc.date.available2014-02-25T15:10:57Z
dc.date.issued2014-02-25
dc.date.submitted2014-02-14
dc.description.abstractSoil represents the largest global reservoir of microbial diversity for the discovery of novel genes and enzymes. Both stable-isotope probing (SIP) and metagenomics have been used to access uncultured microbial diversity, but few studies have combined these two methods for accessing the biotechnological potential of soil genetic diversity and fewer yet have employed functional metagenomics for recovering novel genes and enzymes for bioenergy or bioproduct applications. In this research, I demonstrate the power of combining functional metagenomics and SIP using multiple plant-derived carbon substrates and diverse soils for characterizing active soil bacterial communities and recovering glycosyl hydrolases based on gene expression. Three disparate Canadian soils (tundra, temperate rainforest and agricultural) were incubated with five native carbon (12C) or stable-isotope labelled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose and cellulose). Sampling at defined time intervals (one, three and six weeks) was followed by DNA extraction and cesium chloride density gradient ultracentrifugation. Denaturing gradient gel electrophoresis (DGGE) of all gradient fractions confirmed the recovery of labeled nucleic acids. Sequencing of original soil samples and labeled DNA fractions demonstrated unique heavy DNA patterns associated with all soils and substrates. Indicator species analysis revealed many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Salinibacterium (Actinobacteria), Devosia (Alphaproteobacteria), Telmatospirillum (Alphaproteobacteria), Phenylobacterium (Alphaproteobacteria) and Asticcacaulis (Alphaproteobacteria) were the bacterial “indicator species” for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (genus Phenylobacterium) were associated with metabolism of cellulose. Members of the Alphaproteobacteria were associated with the metabolism of arabinose and members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycosyl hydrolase gene representation within the pooled heavy DNA. By screening only 2876 inserts derived from the 13C-cellulose heavy DNA, stable-isotope probing and functional screens enabled the recovery of six clones with activity against carboxymethylcellulose and methylumbelliferone-based substrates.en
dc.identifier.urihttp://hdl.handle.net/10012/8282
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectCelluloseen
dc.subjecttundra soilen
dc.subjecttemperate rainforest soilen
dc.subjectagricultural soilen
dc.subjectstable-isotope probingen
dc.subjectglycosyl hydrolasesen
dc.subjectmetagenomicsen
dc.subjectmultiple displacement amplificationen
dc.subjectdenaturing gradient gel electrophoresisen
dc.subject16S rRNA geneen
dc.subjecthigh through-put sequencingen
dc.subjectcosmid libraryen
dc.subject.programBiologyen
dc.titleTargeting novel soil glycosyl hydrolases by combining stable isotope probing and metagenomicsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentBiologyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Verastegui_Pena__Yris_Milusqui.pdf
Size:
54.23 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.89 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections