Non-Generic Analytic Combinatorics in Several Variables and Lattice Path Asymptotics

dc.contributor.authorKroitor, Alexander
dc.date.accessioned2024-08-27T14:08:16Z
dc.date.available2024-08-27T14:08:16Z
dc.date.issued2024-08-27
dc.date.submitted2024-08-21
dc.description.abstractFinding and analyzing generating functions is a classic and powerful way of studying combinatorial structures. While generating functions are a priori purely formal objects, there is a rich theory treating them as complex-analytic functions. This is the field of analytic combinatorics, which exploits classical results in complex and harmonic analysis to find asymptotics of coefficient sequences of generating functions. More recently, the field of analytic combinatorics in several variables has been developed to study multivariate generating functions, which are amenable to multivariate analytic results. When dealing with multivariate asymptotics we first pick a direction vector. To find asymptotics using analytic combinatorics, one typically uses the Cauchy integral formula to write the underlying sequence being studied as a complex integral, then uses residue computations to reduce to a so-called Fourier-Laplace integral. When the direction vector chosen is generic, the Fourier-Laplace integral being studied is well-behaved and asymptotics can be computed. When the direction vector chosen is non-generic, the Fourier-Laplace integral has singular amplitude, and asymptotics are harder to compute. This thesis studies singular Fourier-Laplace integrals and their applications to combinatorics. Determining asymptotics for the number of lattice walks restricted to certain regions is one of the particular successes of analytic combinatorics in several variables. In particular, Melczer and Mishna determined asymptotics for the number of walks in an orthant whose set of steps is a subset of { ±1, 0 }^d \ { 0 } and is symmetric over every axis. Melczer and Wilson later determined asymptotics for lattice path models whose set of steps is a subset of { ±1, 0 }^d \ { 0 } and is symmetric over all but one axis, except when the vector sum of all the steps is 0. Here we determine asymptotics in the zero sum case using asymptotics of singular Fourier-Laplace integrals. We additionally study asymptotics of lattice path models restricted to Weyl chambers, before giving some generalizations of asymptotics of singular Fourier-Laplace integrals.
dc.identifier.urihttps://hdl.handle.net/10012/20879
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectanalytic combinatorics
dc.subjectanalytic combinatorics in several variables
dc.subjectlattice path enumeration
dc.titleNon-Generic Analytic Combinatorics in Several Variables and Lattice Path Asymptotics
dc.typeMaster Thesis
uws-etd.degreeMaster of Mathematics
uws-etd.degree.departmentCombinatorics and Optimization
uws-etd.degree.disciplineCombinatorics and Optimization
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorMelczer, Stephen
uws.contributor.affiliation1Faculty of Mathematics
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kroitor_Alexander.pdf
Size:
797.19 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: