UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Chaos and dynamical instability in a closed kicked system

dc.contributor.authorAnand, Amit
dc.date.accessioned2023-08-08T14:55:52Z
dc.date.available2023-08-08T14:55:52Z
dc.date.issued2023-08-08
dc.date.submitted2023-08-02
dc.description.abstractQuantum-classical correspondence plays an important role in understanding the emergence of classical chaos from underlying quantum mechanics. However, the transition from quantum to classical is not straightforward. Here we study a well-known closed-kicked spin system with a chaotic classical limit. The quantum dynamics takes the form of stroboscopic unitary kicks acting on a single spin system. By mapping it to a programmable quantum circuit, we show that NISQ devices can be a potential testbed for simulating quantum chaos. The results suggest that entanglement can be considered a signature of classical chaos even in the deep quantum regime. Extending the work to arbitrary spins and focusing on special Hamiltonian parameters, we then show that the system may acquire temporal periodicity. These temporal periodicities do not depend on the initial state. Throughout such periodic evolutions, no initial quantum state fully explores Hilbert space as either a state vector or phase space as a quasi-probability distribution despite the classical limit being chaotic. Because these state-independent temporal periodicities are present in all dimensions, their existence represents a universal violation of the correspondence principle. We also consider the stability of this periodic behavior as a function of the degree of chaos in the classical model. Our study suggests that even in the semi-classical regime, there are specific parameter values for which a quantum system never behaves classically or displays signatures of chaos.en
dc.identifier.urihttp://hdl.handle.net/10012/19659
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectquantum chaosen
dc.subjectnon-linear dynamicsen
dc.subjectBohr's correspondenceen
dc.subjectentanglementen
dc.titleChaos and dynamical instability in a closed kicked systemen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysics (Quantum Information)en
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorGhose, Shohini
uws.contributor.advisorMann, Robert
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Anand_Amit.pdf
Size:
4.55 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: