UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

The Synthesis of 3-Vinylindolines by the Palladium-Catalyzed Intramolecular Allylic Alkylation of Cinnamyl Acetates and the Synthesis of Polyphenolic 4-Aryl-3,4-dihydrocoumarins by Domino Friedel-Crafts Reactions

dc.contributor.authorRydzik, Jordan
dc.date.accessioned2018-10-24T19:56:42Z
dc.date.available2019-10-25T04:50:12Z
dc.date.issued2018-10-24
dc.date.submitted2018-10-22
dc.description.abstractHistorically, the alkylation of allylic acetates with non-stabilized C(sp3) nucleophiles has been challenging. The metal-catalyzed alkylation of allylic acetates and carbonates with organotin and organoboron reagents has significantly increased the scope of nucleophiles available to participate in such reactions; however, the generation of C(sp3)-C(sp3) bonds in this manner remains difficult. We therefore designed a substrate in order to explore the intramolecular transition metal-catalyzed alkylation of an allylic acetate with a C(sp3) organotin nucleophile. From this substrate we were able to successfully synthesize a number of 3-vinylindolines in modest to good yields in as little as seven steps through the palladium-catalyzed intramolecular allylic alkylation of cinnamyl acetates with tethered organotin nucleophiles. To the best of our knowledge this represents the first example of such a transformation, resulting in the formation of novel C(sp3)-C(sp3) bonds. It has been shown that polyphenolic procyandins, members of the flavonoid class of compounds, possess moderate affinity for a synthetic model of a proline rich region of the microtubule associated protein tau. The phosphorylation of this region of tau is thought to be correlated with the development of intraneuronal protein deposits, a hallmark of Alzheimer’s disease physiopathology. In the second part of this thesis, we set out to utilize the domino Friedel-Crafts alkylation/acylation of benzylidene Meldrum’s acids with phenols previously developed in our group for the synthesis of a number of polyphenolic 4-aryl-3,4-dihydrocoumarins, members of the neoflavonoid class of compounds. By synthesizing a library of polyphenolic neoflavonoids in this manner, which possessed variation in the number and position of hydroxyl groups about the aromatic rings, a systematic survey of the structure-activity relationship was to be conducted. This would allow us gain a better understanding of potential therapeutic agents that may be able to attenuate the formation of these intraneuronal protein deposits in the treatment of Alzheimer’s disease.en
dc.identifier.urihttp://hdl.handle.net/10012/14059
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectOrganic chemistryen
dc.subjectSynthetic chemistryen
dc.subjectAllylic alkylationen
dc.subjectPalladiumen
dc.subjectFriedel-Crafts alkylationen
dc.subjectFriedel-Crafts acylationen
dc.subjectTsuji-Trosten
dc.subjectIndolineen
dc.subjectIndoleen
dc.subjectCoumarinen
dc.subjectAlzheimer's diseaseen
dc.subjectPolyphenolsen
dc.titleThe Synthesis of 3-Vinylindolines by the Palladium-Catalyzed Intramolecular Allylic Alkylation of Cinnamyl Acetates and the Synthesis of Polyphenolic 4-Aryl-3,4-dihydrocoumarins by Domino Friedel-Crafts Reactionsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentChemistryen
uws-etd.degree.disciplineChemistryen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorFillion, Eric
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rydzik_Jordan.pdf
Size:
3.1 MB
Format:
Adobe Portable Document Format
Description:
Masters Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections