Effect of Topography, Stiffness and Biochemicals on Neuronal Differentiation

dc.contributor.authorFeng, Fan
dc.date.accessioned2022-02-18T20:18:07Z
dc.date.available2024-02-19T05:50:04Z
dc.date.issued2022-02-18
dc.date.submitted2022-02-16
dc.description.abstractThe mechanical and biochemical modifications of the hydrogel substrates play an essential role in tissue engineering research and neurodegenerative therapies. Topography, stiffness, and biochemicals are known to have important influences on neural cells, such as cell adhesion, proliferation, migration, and differentiation. These factors not only affect cells independently but also have a combined effect. The purpose of this thesis is to investigate these impacts on neural cells. We first hypothesized that topography and stiffness would affect neuronal differentiation and maturation. Polyacrylamide hydrogels were used to provide promising scaffolds for human neural progenitor cells (hNPCs) attachment. Both healthy hNPCs and Rett-syndrome disease hNPCs were used to examine the cell behaviors on different combinations of topographies and stiffnesses. Then healthy hNPCs were cultured for 21 days to assess the effects on neuronal differentiation and maturation. Next, we hypothesized that topography and biochemicals would impact cell adhesion and differentiation. With biocompatibility and biodegradability properties, polyvinyl alcohol (PVA) hydrogels are considered a great resource for regenerative medicine. However, the plain PVA surface rarely supports cell attachment. The biochemical modifications are necessary for further cell studies. PC12 cell lines were used to study the cell adhesion, proliferation, and viability on various biochemical conjugation. Then PC12 cell lines were seeded on the PVA substrates with different topographies and biochemicals to study the combined effect on cell differentiation and the neurite length. Overall, the findings of this research work show the specific combinations of mechanical and biochemical modifications would promote cell adhesion and differentiation.en
dc.identifier.urihttp://hdl.handle.net/10012/18078
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjecteffect of topographyen
dc.subjecteffect of stiffnessen
dc.subjecteffect of biochemicalsen
dc.subjectneuronal differentiationen
dc.subjecthydrogelsen
dc.titleEffect of Topography, Stiffness and Biochemicals on Neuronal Differentiationen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms2 yearsen
uws.contributor.advisorYim, Evelyn
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Fan_Feng.pdf
Size:
25.89 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: