UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A spiking neural network of state transition probabilities in model-based reinforcement learning

dc.contributor.authorShein, Mariah
dc.date.accessioned2017-10-23T19:08:13Z
dc.date.available2017-10-23T19:08:13Z
dc.date.issued2017-10-23
dc.date.submitted2017-10-16
dc.description.abstractThe development of the field of reinforcement learning was based on psychological studies of the instrumental conditioning of humans and other animals. Recently, reinforcement learning algorithms have been applied to neuroscience to help characterize neural activity and animal behaviour in instrumental conditioning tasks. A specific example is the hybrid learner developed to match human behaviour on a two-stage decision task. This hybrid learner is composed of a model-free and a model-based system. The model presented in this thesis is an implementation of that model-based system where the state transition probabilities and Q-value calculations use biologically plausible spiking neurons. Two variants of the model demonstrate the behaviour when the state transition probabilities are encoded in the network at the beginning of the task, and when these probabilities are learned over the course of the task. Various parameters that affect the behaviour of the model are explored, and ranges of these parameters that produce characteristically model-based behaviour are found. This work provides an important first step toward understanding how a model-based system in the human brain could be implemented, and how this system contributes to human behaviour.en
dc.identifier.urihttp://hdl.handle.net/10012/12574
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectreinforcement learningen
dc.subjectmodel-based reinforcement learningen
dc.subjectspiking neural modelen
dc.subjectstate transition probabilityen
dc.subjectdecision tasken
dc.titleA spiking neural network of state transition probabilities in model-based reinforcement learningen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorEliasmith, Chris
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Shein_Mariah.pdf
Size:
4.75 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: