Packaging and Characterization of NbN Superconducting Nanowire Single Photon Detectors

Loading...
Thumbnail Image

Date

2009-05-22T17:42:57Z

Authors

Orgiazzi, Jean-Luc François-Xavier

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Superconducting nanowire single-photon detectors (SNSPDs) are nanodevices usually made from thin niobium nitride (NbN) films. Operated at liquid helium temperature, they can exhibit high detection efficiency with low dark-counts associated with a fast response time and a low timing jitter. Covering a broad detection range from ultraviolet to mid-infrared, SNSPDs are a very attractive alternative to silicon or gallium arsenide based semiconductor detectors for fiber based telecommunication when single-photon sensitivity and high counting rates are necessary. Efficient packaging and fiber coupling of a SNSPD is in itself a real challenge and is often a limiting factor in reaching high system quantum efficiency. Our approach makes use of a controlled expansion alloy which has been adequately heat treated to enhance its characteristics for cryogenic operation. This insures the integrity of the optical coupling at cryogenic temperatures while done at room temperature. It also provides a good attenuation for electromagnetic interference due to the high relative permeability of the nickel-iron alloy. The small form factor of this pigtailed optical fiber package makes it versatile and could be easily integrated with a commercial cryogen-free system or simply dipped into a standard helium transport Dewar. We report on our theoretical and experimental methodology to evaluate the optical coupling quality and present the optoelectronic characterization of two devices packaged in this way. Electrical simulation is studied to understand the speed limitation factor inherent to these devices and preliminary speed and jitter measurements are reported.

Description

Keywords

Superconducting optoelectronics, cryogenic packaging, superconducting NbN nanowire single photon detector

LC Subject Headings

Citation