Inertial MEMS Sensors

dc.comment.hiddenI requested to restrict circulation of my thesis for six months.en
dc.contributor.authorAlghamdi, Majed
dc.date.accessioned2015-01-07T19:17:40Z
dc.date.embargountil2016-01-07T19:17:40Z
dc.date.issued2015-01-07
dc.date.submitted2014
dc.description.abstractIn this work, novel electrostatic micro-electro-mechanical system (MEMS) sensor and sensors are introduced and demonstrated. First, a novel bifurcation-based MEMS ethanol vapor sensor is demonstrated. In contrast to traditional gas sensors that measure in analog mode (quantify) gas concentration, this sensor does not quantify the gas concentration. Rather, it detects its gas concentration in binary mode, reporting (1) for concentrations above a preset threshold and (0) for concentrations below the threshold. The sensing mechanism exploits the qualitative difference between the sensor state before and after the static pull-in bifurcation in electrostatic MEMS. The transition between these states is the bifurcation used in detection. A driving circuit with a resolution of 1 mV was used to drive the sensor at a point close to the pull-in limit to achieve maximum sensitivity. The sensor was able to detect concentrations as low as 5 ppm of ethanol vapor in dry nitrogen, equivalent to a detectable mass of 165 pg. Gas detection was verified electrically and optically through a detection circuit and a CCD camera, respectively. Second, a novel tunable MEMS magnetic field sensor is demonstrated in this work. It measures torsional vibrations excited via Lorentz force. The sensor sensitivity and dynamic range can be tuned by varying a bias voltage. Experimental demonstration shows that the sensor sensitivity can be changed from 0.436 (mm/s)/mT at 6 V bias to 0.87 (mm/s)/mT at 1 V bias. Unlike most commercial magnetic sensors, this magnetic sensor achieves a higher bandwidth (182 kHz) and a tunable sensitivity adjustable on-the-fly.en
dc.description.embargoterms1 yearen
dc.identifier.urihttp://hdl.handle.net/10012/9040
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subject.programSystem Design Engineeringen
dc.titleInertial MEMS Sensorsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alghamdi_Majed.pdf
Size:
12.34 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.67 KB
Format:
Item-specific license agreed upon to submission
Description: