Convex Large Margin Training - Unsupervised, Semi-supervised, and Robust Support Vector Machines

dc.contributor.authorXu, Linli
dc.date.accessioned2007-05-22T18:30:40Z
dc.date.available2007-05-22T18:30:40Z
dc.date.issued2007-05-22T18:30:40Z
dc.date.submitted2007
dc.description.abstractSupport vector machines (SVMs) have been a dominant machine learning technique for more than a decade. The intuitive principle behind SVM training is to find the maximum margin separating hyperplane for a given set of binary labeled training data. Previously, SVMs have been primarily applied to supervised learning problems, where target class labels are provided with the data. Developing unsupervised extensions to SVMs, where no class labels are given, turns out to be a challenging problem. In this dissertation, I propose a principled approach for unsupervised and semi-supervised SVM training by formulating convex relaxations of the natural training criterion: find a (constrained) labeling that would yield an optimal SVM classifier on the resulting labeled training data. This relaxation yields a semidefinite program (SDP) that can be solved in polynomial time. The resulting training procedures can be applied to two-class and multi-class problems, and ultimately to the multivariate case, achieving high quality results in each case. In addition to unsupervised training, I also consider the problem of reducing the outlier sensitivity of standard supervised SVM training. Here I show that a similar convex relaxation can be applied to improve the robustness of SVMs by explicitly suppressing outliers in the training process. The proposed approach can achieve superior results to standard SVMs in the presence of outliers.en
dc.format.extent1645797 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/10012/3076
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectArtificial Intelligenceen
dc.subjectMachine Learningen
dc.subjectSupport Vector Machinesen
dc.subject.programComputer Scienceen
dc.titleConvex Large Margin Training - Unsupervised, Semi-supervised, and Robust Support Vector Machinesen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentSchool of Computer Scienceen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
1.57 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
242 B
Format:
Item-specific license agreed upon to submission
Description: