Bifurcation Analysis of Large Networks of Neurons

dc.contributor.authorNicola, Wilten
dc.date.accessioned2015-12-23T13:54:16Z
dc.date.available2015-12-23T13:54:16Z
dc.date.issued2015-12-23
dc.date.submitted2015-12-10
dc.description.abstractThe human brain contains on the order of a hundred billion neurons, each with several thousand synaptic connections. Computational neuroscience has successfully modeled both the individual neurons as various types of oscillators, in addition to the synaptic coupling between the neurons. However, employing the individual neuronal models as a large coupled network on the scale of the human brain would require massive computational and financial resources, and yet is the current undertaking of several research groups. Even if one were to successfully model such a complicated system of coupled differential equations, aside from brute force numerical simulations, little insight may be gained into how the human brain solves problems or performs tasks. Here, we introduce a tool that reduces large networks of coupled neurons to a much smaller set of differential equations that governs key statistics for the network as a whole, as opposed to tracking the individual dynamics of neurons and their connections. This approach is typically referred to as a mean-field system. As the mean-field system is derived from the original network of neurons, it is predictive for the behavior of the network as a whole and the parameters or distributions of parameters that appear in the mean-field system are identical to those of the original network. As such, bifurcation analysis is predictive for the behavior of the original network and predicts where in the parameter space the network transitions from one behavior to another. Additionally, here we show how networks of neurons can be constructed with a mean-field or macroscopic behavior that is prescribed. This occurs through an analytic extension of the Neural Engineering Framework (NEF). This can be thought of as an inverse mean-field approach, where the networks are constructed to obey prescribed dynamics as opposed to deriving the macroscopic dynamics from an underlying network. Thus, the work done here analyzes neuronal networks through both top-down and bottom-up approaches.en
dc.identifier.urihttp://hdl.handle.net/10012/10083
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectNeural Networksen
dc.subjectIntegrate-and-Fire Neuronsen
dc.subjectMean-Field Analysisen
dc.subjectBifurcation Analysisen
dc.subjectNon-Smooth Dynamical Systemsen
dc.subjectNeural Engineering Frameworken
dc.titleBifurcation Analysis of Large Networks of Neuronsen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentApplied Mathematicsen
uws-etd.degree.disciplineApplied Mathematicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorCampbell, Sue Ann
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Nicola_Wilten.pdf
Size:
38.71 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: