UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Design and Optimization Methodology of Sub-dermal Electroencephalography Dry Spike-Array Electrode

Loading...
Thumbnail Image

Date

2006

Authors

Gabran, Salam Ramy

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Monitoring bio-electric events is a common procedure, which provides medical data required in clinical and research applications. Electrophysiological measurements are applied in diagnosis as well as evaluation of the performance of different body organs and systems, e. g. the heart, muscles and the nervous system. Furthermore, it is staple feature in operation rooms and extensive care units. The performance of the recording system is affected by the tools and instrumentation used and the bio-electrode is a key-player in electrophysiology, hence, the improvements in the electrode recording technique will be directly reflected in the system?s performance in terms of the signal quality, recording duration as well as patient comfort. In this thesis, a design methodology for micro-spike array dry bio-electrodes is introduced. <br /><br /> The purpose of this methodology is to meet the design specifications for portable long-term EEG recording and optimize the electrical performance of the electrodes by maximizing the electrode-skin contact surface area, while fulfilling design constraints including mechanical, physiological and economical limitations. This was followed by proposing a low cost fabrication technique to implement the electrodes. The proposed electrode design has a potential impact in enhancing the performance of the current recording systems, and also suits portable monitoring and long term recording devices. The design process was aided by using a software design and optimization tool, which was specifically created for this application. <br /><br /> The application conditions added challenges to the electrode design in order to meet the required performance requirements. On the other hand, the required design specifications are not fulfilled in the current electrode technologies which are designed and customized only for short term clinical recordings. <br /><br /> The electrode theory of application was verified using an experimental setup for an electrochemical cell, but the overall performance including measuring the electrode impedance is awaiting a clinical trial.

Description

Keywords

Electrical & Computer Engineering, bio-electrodes, EEG, mems, microfabrication

LC Keywords

Citation