Theranostic Gold Nanoparticles for Enhanced Prostate Cancer Radiotherapy

dc.contributor.authorAborig, Mohamed
dc.date.accessioned2025-09-23T13:19:07Z
dc.date.available2025-09-23T13:19:07Z
dc.date.issued2025-09-23
dc.date.submitted2025-09-08
dc.description.abstractTheranostic gold nanoparticles (GNPs) were engineered to enhance external-beam radiotherapy for prostate cancer while enabling quantitative imaging readouts. I synthesized biocompatible, polyphenol-functionalized GNPs using epigallocatechin gallate (EGCG-GNPs) and curcumin (Curc-GNPs), optimized for colloidal stability, cell-receptor affinity, and antioxidative properties. Comprehensive physicochemical characterization (DLS/ζ-potential, TEM, UV–Vis) and analytical assays (HPLC for drug loading; ICP-MS for Au quantification) established reproducible formulations. In vitro studies in PC-3 cells demonstrated efficient cellular uptake and radiosensitization, evidenced by reduced clonogenic survival compared with radiation alone. In vivo, murine and canine models were used to evaluate biodistribution, acute/sub-acute toxicity, and imaging. Computed-tomography (CT) phantom and tissue studies confirmed a linear relationship between Hounsfield units and gold concentration, enabling noninvasive estimation of intraprostatic nanoparticle burden. A physiologically based pharmacokinetic (PBPK) model captured organ kinetics and supported translation of exposure–response. Finally, I piloted an image-guided intra-arterial delivery paradigm adapted from prostatic arterial embolization: nanoparticle infusion into prostate lobes followed by embolization to promote local retention, reduce systemic exposure, and potentiate radiation dose deposition. This minimally invasive procedure was tested in 3 lab beagles and 1 clinical canine case with naturally occurring prostate cancer. Collectively, these data establish a dual-functional GNP platform that couples CT-visible quantification with meaningful radiosensitization, laying the preclinical and procedural groundwork for image-guided nanoparticle-augmented radiotherapy in prostate cancer.
dc.identifier.urihttps://hdl.handle.net/10012/22535
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleTheranostic Gold Nanoparticles for Enhanced Prostate Cancer Radiotherapy
dc.typeDoctoral Thesis
uws-etd.degreeDoctor of Philosophy
uws-etd.degree.departmentSchool of Pharmacy
uws-etd.degree.disciplinePharmacy
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorWettig, Shawn
uws.contributor.affiliation1Faculty of Science
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Aborig_Mohamed.pdf
Size:
19.4 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections