A Framework for Human Motion Strategy Identification and Analysis

dc.contributor.authorChoudry, Muhammad
dc.date.accessioned2019-05-21T17:52:19Z
dc.date.available2019-05-21T17:52:19Z
dc.date.issued2019-05-21
dc.date.submitted2019-05-15
dc.description.abstractThe human body has many biomechanical degrees of freedom and thus multiple movement strategies can be employed to execute any given task. Automated identification and classification of these movement strategies have potential applications in various fields including sports performance research, rehabilitation, and injury prevention. For example, in the field of rehabilitation, the choice of movement strategy can impact joint loading patterns and risk of injury. The problem of identifying movement strategies is related to the problem of classifying variations in the observed motions. When differences between two movement trajectories performing the same task are large, they are considered to be different movement strategies. Conversely, when the differences between observed movements are small, they are considered to be variations of the same movement strategy. In the simplest scenario a movement strategy can represent a cluster of similar movement trajectories, but in more complicated scenarios differences in movements could also lie on a continuum. The goal of this thesis is to develop a computational framework to automatically recognize different movement strategies for performing a task and to identify what makes each strategy different. The proposed framework utilizes Gaussian Process Dynamical Models (GPDM) to convert human motion trajectories from their original high dimensional representation to a trajectory in a lower dimensional space (i.e. the latent space). The dimensionality of the latent space is determined by iteratively increasing the dimensionality until the reduction in reconstruction error between iterations becomes small. Then, the lower dimensional trajectories are clustered using a Hidden Markov Model (HMM) clustering algorithm to identify movement strategies in an unsupervised manner. Next, we introduce an HMM-based technique for detecting differences in signals between two HMM models. This technique is used to compare latent space variables between the low-dimensional trajectory models as well as differences in degrees-of-freedom (DoF) between the corresponding high-dimensional (original) trajectory models. Then, through correlating latent variable and DoF differences movement synergies are discovered. To validate the proposed framework, it was tested on 3 different datasets – a synthetic dataset, a real labeled motion capture dataset, and an unlabeled motion capture dataset. The proposed framework achieved higher classification accuracy against competing algorithms (Joint Component Vector and Kinematic Synergies) where labels were known apriori. Additionally, the proposed algorithm showed that it was able to discover strategies that were not known apriori and how the strategies differed.en
dc.identifier.urihttp://hdl.handle.net/10012/14655
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectHuman Motion Analysisen
dc.subjectHidden Markov Modelsen
dc.subjectMovement synergyen
dc.subjectTime Series Clusteringen
dc.subjectGaussian Process Dynamical Modelsen
dc.subjectMovement Strategyen
dc.subjectJoint Analysisen
dc.subjectComparing Human Movementsen
dc.subjectTime Series Modelingen
dc.titleA Framework for Human Motion Strategy Identification and Analysisen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentElectrical and Computer Engineeringen
uws-etd.degree.disciplineElectrical and Computer Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorKulic, Dana
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Choudry_Muhammad.pdf
Size:
3.52 MB
Format:
Adobe Portable Document Format
Description:
Masters Thesis

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: