The number of valid factorizations of Fibonacci prefixes
dc.contributor.author | Bonardo, Pierre | |
dc.contributor.author | Frid, Anna E. | |
dc.contributor.author | Shallit, Jeffrey | |
dc.date.accessioned | 2019-05-21T19:22:58Z | |
dc.date.available | 2019-05-21T19:22:58Z | |
dc.date.issued | 2019-07-05 | |
dc.description | The final publication is available at Elsevier via https://doi.org/10.1016/j.tcs.2018.12.016 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.description.abstract | We establish several recurrence relations and an explicit formula for , the number of factorizations of the length-n prefix of the Fibonacci word into a (not necessarily strictly) decreasing sequence of standard Fibonacci words. In particular, we show that the sequence is the shuffle of the ceilings of two linear functions of n. | en |
dc.identifier.uri | https://doi.org/10.1016/j.tcs.2018.12.016 | |
dc.identifier.uri | http://hdl.handle.net/10012/14664 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | numeration systems | en |
dc.subject | fibonacci numeration system | en |
dc.subject | fibonacci word | en |
dc.title | The number of valid factorizations of Fibonacci prefixes | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Bonardo, P., Frid, A. E., & Shallit, J. (2019). The number of valid factorizations of Fibonacci prefixes. Theoretical Computer Science, 775, 68-75. https://doi.org/10.1016/j.tcs.2018.12.016. | en |
uws.contributor.affiliation1 | Mathematics, Faculty of | en |
uws.contributor.affiliation2 | Computer Science (David R. Cheriton School of) | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
uws.typeOfResource | Text | en |