On Finding Large Cliques when the Chromatic Number is close to the Maximum Degree
Loading...
Date
Authors
MacDonald, Colter
Advisor
Haxell, Penelope
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
We prove that every graph G with chromatic number χ(G) = ∆(G) − 1 and ∆(G) ≥ 66 contains a clique of size ∆(G) − 17. Our proof closely parallels a proof from Cranston and Rabern, who showed that graphs with χ = ∆ and ∆ ≥ 13 contain a clique of size ∆ − 3. Their result is the best currently known for general ∆ towards the Borodin-Kostochka conjecture, which posits that graphs with χ = ∆ and ∆ ≥ 9 contain a clique of size ∆. We also outline some related progress which has been made towards the conjecture.