3D MEMS Microassembly

dc.contributor.authorDo, Chau
dc.date.accessioned2008-09-03T17:52:49Z
dc.date.available2008-09-03T17:52:49Z
dc.date.issued2008-09-03T17:52:49Z
dc.date.submitted2008
dc.description.abstractDue to the potential uses and advantages of 3D microelectromechanical systems (MEMS), research has been ongoing to advance the field. The intention of my reasearch is to explore different gripper designs and their interaction with corresponding components to establish a 3D microassembly system. In order to meet these goals, two grippers were designed using different mechanisms for grasping. At the same time, corresponding parts capable of being constructed into a 3D microstructure were designed to interact with the grippers. The microcomponents were fabricated using PolyMUMPS, a part of the Multi-User MEMS Processes (MUMPS), and experimentation was conducted with the goal of constructing a 3D microstructure. The results were partially successful in that both grippers were able to pick up corresonponding parts and bring them out of plane in order to make them stand up. However, a final 3D microstructure was unfortunately not achieved due to time constraints. This will be left to future researchers who continue the project. On the equpiment side a microassembly system was fully integrated using cameras for vision and motors with micro-resolution for movement. A computer program was used to control each part of the system. The cameras provided feedback from various views, allowing the operator to observe what was happening to the microcomponents. The grippers were attached to one of the motors and manipulated to pick up the parts. The final overall system proved sufficient for microassembly, but had some areas that could be improved upon.en
dc.identifier.urihttp://hdl.handle.net/10012/3952
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectMEMSen
dc.subjectmicroassemblyen
dc.subjectmicroelectromechanical systemsen
dc.subject.programSystem Design Engineeringen
dc.title3D MEMS Microassemblyen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentSystems Design Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
uw-ethesis.pdf
Size:
28.53 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
249 B
Format:
Item-specific license agreed upon to submission
Description: