An Efficient Motion Estimation Method for H.264-Based Video Transcoding with Arbitrary Spatial Resolution Conversion

Loading...
Thumbnail Image

Date

2007-07-19T15:31:53Z

Authors

Wang, Jiao

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

As wireless and wired network connectivity is rapidly expanding and the number of network users is steadily increasing, it has become more and more important to support universal access of multimedia content over the whole network. A big challenge, however, is the great diversity of network devices from full screen computers to small smart phones. This leads to research on transcoding, which involves in efficiently reformatting compressed data from its original high resolution to a desired spatial resolution supported by the displaying device. Particularly, there is a great momentum in the multimedia industry for H.264-based transcoding as H.264 has been widely employed as a mandatory player feature in applications ranging from television broadcast to video for mobile devices. While H.264 contains many new features for effective video coding with excellent rate distortion (RD) performance, a major issue for transcoding H.264 compressed video from one spatial resolution to another is the computational complexity. Specifically, it is the motion compensated prediction (MCP) part. MCP is the main contributor to the excellent RD performance of H.264 video compression, yet it is very time consuming. In general, a brute-force search is used to find the best motion vectors for MCP. In the scenario of transcoding, however, an immediate idea for improving the MCP efficiency for the re-encoding procedure is to utilize the motion vectors in the original compressed stream. Intuitively, motion in the high resolution scene is highly related to that in the down-scaled scene. In this thesis, we study homogeneous video transcoding from H.264 to H.264. Specifically, for the video transcoding with arbitrary spatial resolution conversion, we propose a motion vector estimation algorithm based on a multiple linear regression model, which systematically utilizes the motion information in the original scenes. We also propose a practical solution for efficiently determining a reference frame to take the advantage of the new feature of multiple references in H.264. The performance of the algorithm was assessed in an H.264 transcoder. Experimental results show that, as compared with a benchmark solution, the proposed method significantly reduces the transcoding complexity without degrading much the video quality.

Description

Keywords

H.264, video transcoding

LC Keywords

Citation