UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Synthesis of New Magnetic Nanocomposite Materials for Data Storage

dc.contributor.authorAlamri, Haleema
dc.date.accessioned2012-08-09T20:11:37Z
dc.date.available2012-08-09T20:11:37Z
dc.date.issued2012-08-09T20:11:37Z
dc.date.submitted2012
dc.description.abstractThe confinement of magnetic nanoparticles (Prussian blue analogues (PBAs) has been achieved using mesostructured silica as a matrix. The PBAs have the general formula AxMy[M'(CN)n]z, where A is an alkali metal cation; M: CoII, NiII, SmIII; and M': CoII. The two reactions were run in parallel and led to a mesostructured silica matrix that contains nanoparticles of PBA homogeneously distributed within the silica framework. As initially reported for the synthesis of Co3[Fe(CN)6]2 magnetic nanoparticles, in the research conducted for this thesis, this synthesis has been extended to other compounds and to lanthanides such as Sm and has also included the study of the influence of different parameters (pH, concentration). As these nanocomposites are potentially good candidates for the preparation of bimetallic nanoparticles and oxides through controlled thermal treatment, the second goal of the research was to employ an adapted thermal treatment in order to prepare metal and metal oxide nanoparticles from PBA, directly embedded in the silica matrix. To this end, the influence of the thermal treatment (temperature, time, atmosphere) on the nature and structure of the resulting materials was investigated, with a focus on the potential use of the combustion of the organic templates as in-situ reducing agents. For some compounds, the preparation of bimetallic nanoparticles was successful. This method was tentatively applied to the preparation of specific Sm:Co bimetallic compounds, are well known as one of the best permanent magnets currently available.en
dc.identifier.urihttp://hdl.handle.net/10012/6846
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectsynthesis of New Magnetic Nanocomposite Materialsen
dc.subjectdata Storageen
dc.subject.programChemistryen
dc.titleSynthesis of New Magnetic Nanocomposite Materials for Data Storageen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentChemistryen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Alamri_Haleema.pdf
Size:
16.87 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
250 B
Format:
Item-specific license agreed upon to submission
Description:

Collections