Large Data-to-Text Generation

dc.contributor.authorSarangian, Varnan
dc.date.accessioned2023-05-16T14:32:38Z
dc.date.available2023-05-16T14:32:38Z
dc.date.issued2023-05-16
dc.date.submitted2023-05-11
dc.description.abstractThis thesis presents a domain-driven approach to sports game summarization, a specific instance of large data-to-text generation (DTG). We first address the data fidelity issue in the Rotowire dataset by supplementing existing input records and demonstrating larger relative improvements compared to previously proposed purification schemes. As this method further increases the total number of input records, we alternatively formulate this problem as a multimodal problem (i.e. visual data-to-text), discussing potential advantages over purely textual approaches and studying its effectiveness for future expansion. We work exclusively with pre-trained end-to-end transformers throughout, allowing us to evaluate the efficacy of sparse attention and multimodal encoder-decoders in DTG and providing appropriate benchmarks for future work. To automatically evaluate the statistical correctness of generated summaries, we also extend prior work on automatic relation extraction and build an updated pipeline that incorporates low amounts of human-annotated data which are quickly inflated via data augmentation. By formulating this in a ”text-to-text” fashion, we are able to take advantage of LLMs and achieve significantly higher precision and recall than previous methods while tracking three times the number of unique relations. Our updated models are more consistent and reliable by incorporating human-verified data partitions into the training and evaluation process.en
dc.identifier.urihttp://hdl.handle.net/10012/19451
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleLarge Data-to-Text Generationen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentStatistics and Actuarial Scienceen
uws-etd.degree.disciplineStatisticsen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorChenouri, Shoja'eddin
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sarangian_Varnan.pdf
Size:
6.94 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: