UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

A Quantitative Model of the Initiation of DNA Replication in Saccharomyces cerevisiae

dc.comment.hiddenDear Rohan Thank you for your message. As author, you retain copyright of articles published under the Creative Commons licence used by BioMed Central. Therefore, as long as you acknowledge/cite the original publication, you are at liberty to reuse your content in any way you choose. Good luck with your PhD thesis! Kind regards Natasha Natasha Mellins-Cohen Head of Publishing Operations BioMed Centralen
dc.contributor.authorGidvani, Rohan
dc.date.accessioned2012-05-01T17:33:16Z
dc.date.available2012-05-01T17:33:16Z
dc.date.issued2012-05-01T17:33:16Z
dc.date.submitted2012
dc.description.abstractA crucial step in eukaryotic cell proliferation is the initiation of DNA replication, a tightly regulated process mediated by a multitude of protein factors. In Saccharomyces cerevisiae, this occurs as a result of the concerted action of an assembly of proteins acting at origins of replication, known as the pre-replicative complex (pre-RC). While many of the mechanisms pertaining to the functions of these proteins and the associations amongst them have been explored experimentally, mathematical models are needed to effectively explore the network’s dynamic behaviour. An ordinary differential equation (ODE)-based model of the protein-protein interaction network describing DNA replication initiation was constructed. The model was validated against quantified levels of protein factors determined in vivo and from the literature over a range of cell cycle timepoints. The model behaviour conforms to perturbation trials previously reported in the literature and accurately predicts the results of knockdown experiments performed herein. Furthermore, the DNA replication model was successfully incorporated into an established model of the entire yeast cell cycle, thus providing a comprehensive description of these processes. A screen for novel DNA damage response proteins was investigated using a unique proteomics approach that uses chromatin fractionation samples to enrich for factors bound to the DNA. This form of sub-cellular fractionation was combined with differential-in-gel-electrophoresis (DIGE) to detect and quantify low abundance chromatin proteins in the budding yeast proteome. The method was applied to analyze the effect of the DNA damaging agent methyl methanesulfonate (MMS) on levels of chromatin-associated proteins. Up-regulation of several previously characterized DNA damage checkpoint-regulated proteins, such as Rnr4, Rpa1 and Rpa2, was observed. In addition, several novel DNA damage responsive proteins were identified and assessed for genotoxic sensitivity. A strain in which the expression of the Ran-GTPase binding protein Yrb1 was reduced was found to be hypersensitive to genotoxic stress, pointing to a role for this nuclear import-associated protein in DNA damage response. The model presented in this thesis provides a tool for exploring the biochemical network of DNA replication. This is germane to the exploration of new cancer therapeutics considering the link between this disease (and others) and errors in proper cell cycle regulation. The high functional conservation between cell cycle mechanisms in humans and yeast allows predictive analyses of the model to be extrapolated towards understanding aberrant human cell proliferation. Importantly, the model is useful in identifying potential targets for cancer treatment and provides insights into developing highly specific anti-cancer drugs. Finally, the characterization of factors in the proteomic screen opens the door to further investigation of the roles of potential DNA damage response proteins.en
dc.identifier.urihttp://hdl.handle.net/10012/6695
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectDNA replicationen
dc.subjectMathematical modelen
dc.subjectcell cycleen
dc.subjectsystems biologyen
dc.subject.programBiologyen
dc.titleA Quantitative Model of the Initiation of DNA Replication in Saccharomyces cerevisiaeen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentBiologyen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Gidvani_Rohan.pdf
Size:
33.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
250 B
Format:
Item-specific license agreed upon to submission
Description:

Collections