The Effect of Acute Intermittent Hypercapnia and Exercise on Ventilatory Chemosensitivity and Cardiovascular Function

dc.contributor.authorRynne, Paige
dc.date.accessioned2025-05-27T17:52:59Z
dc.date.available2025-05-27T17:52:59Z
dc.date.issued2025-05-27
dc.date.submitted2025-05-22
dc.description.abstractVentilatory long-term facilitation (vLTF) is a form of respiratory plasticity triggered by intermittent hypoxia (IH) in the presence of CO2 (1,2,4,34). The manifestation of vLTF following intermittent hypercapnia (IHc) without concurrent hypoxia – particularly in combination with exercise- remains unclear. This study evaluated the physiological effects of IHc and moderate-intensity exercise on cardiovascular function and ventilatory control in the resting and exercising states. Twenty healthy participants (10F) completed a three-visit protocol, including two experimental exposures to either IHc (PETCO2 +5mmHg for 40s, intersped with 20s normocapnic normoxia) or continuous room air (control), each followed by an exercising and resting observational period (~45 minutes in total). At rest, the cardiovascular response to IHc was not found to be different from control. During exercise, heart rate (HR) increased following IHc and mean arterial pressure (MAP) significantly decreased (HR: +12bpm, p < 0.001; MAP: -8mmHg, p = 0.006), while both appeared stable in the time-matched control. Exercising peripheral hypercapnic chemosensitivity (PHC) appeared constant over time with IHc (+14 ± 25%), contradicting the significant decrease observed with control (-8 ± 20%, p = 0.017). While ventilation (V̇E) increased across both states following IHc relative to control, only resting V̇E was disproportionate to metabolic demand, as reflected by a lower %ΔV̇E/%ΔV̇CO2 ratio relative to control. These findings suggest the presence of exercise with IHc may have a modulatory role in the development or expression of cardiorespiratory plasticity, as well as implicating sensory long-term facilitation (LTF) as a contributor to vLTF. Finally, a progressive amplification in V̇E over the course of IHc, independent of CO2 stimulus intensity, is consistent with early-stage chemosensory gain. Collectively, these findings demonstrate that IHc without hypoxia can elicit key indicators of vLTF.
dc.identifier.urihttps://hdl.handle.net/10012/21802
dc.language.isoen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectintermittent hypercapnia
dc.subjectcardiorespiratory physiology
dc.subjectcardiopulmonary plasticity
dc.subjectlong term facillitation
dc.titleThe Effect of Acute Intermittent Hypercapnia and Exercise on Ventilatory Chemosensitivity and Cardiovascular Function
dc.typeMaster Thesis
uws-etd.degreeMaster of Science
uws-etd.degree.departmentKinesiology and Health Sciences
uws-etd.degree.disciplineKinesiology
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0
uws.contributor.advisorAu, Jason
uws.contributor.affiliation1Faculty of Health
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rynne_Paige.pdf
Size:
2.34 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: