Selectable Heaps and Their Application to Lazy Search Trees

dc.contributor.authorZhang, Lingyi
dc.date.accessioned2021-04-29T13:52:24Z
dc.date.available2021-04-29T13:52:24Z
dc.date.issued2021-04-29
dc.date.submitted2021-04-21
dc.description.abstractWe show the O(log n) time extract minimum function of efficient priority queues can be generalized to the extraction of the k smallest elements in O(k log(n/k)) time. We first show the heap-ordered tree selection of Kaplan et al. can be applied on the heap-ordered trees of the classic Fibonacci heap to support the extraction in O(k \log(n/k)) amortized time. We then show selection is possible in a priority queue with optimal worst-case guarantees by applying heap-ordered tree selection on Brodal queues, supporting the operation in O(k log(n/k)) worst-case time. Via a reduction from the multiple selection problem, Ω(k log(n/k)) time is necessary. We then apply the result to the lazy search trees of Sandlund & Wild, creating a new interval data structure based on selectable heaps. This gives optimal O(B+n) lazy search tree performance, lowering insertion complexity into a gap Δi to O(log(n/|Δi|))$ time. An O(1)-time merge operation is also made possible under certain conditions. If Brodal queues are used, all runtimes of the lazy search tree can be made worst-case. The presented data structure uses soft heaps of Chazelle, biased search trees, and efficient priority queues in a non-trivial way, approaching the theoretically-best data structure for ordered data.en
dc.identifier.urihttp://hdl.handle.net/10012/16921
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectpriority queuesen
dc.subjectFibonacci heapen
dc.subjectdata structureen
dc.subjectalgorithmen
dc.titleSelectable Heaps and Their Application to Lazy Search Treesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorMunro, Ian
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Zhang_Lingyi.pdf
Size:
294.84 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: