An Integrated Polymer Based Polymerase Chain Reaction And Capillary Electrophoresis System For Genetic Diagnosis

Loading...
Thumbnail Image

Authors

Ma, Tianchi

Advisor

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Micro-Total-Analysis-Systems (µTAS) for genetic diagnosis have a great potential to revolutionize the future of health care. However the lack of µTAS, which is fully integrated, mass-producible and application oriented, has delayed µTAS development in real life application. In this work, I developed designs, protocols and supporting infrastructures for a polymer-based, fully integrable genetic diagnosis system capable of the Polymerase Chain Reaction (PCR) and Capillary Electrophoresis (CE). Each individual module could be integrated through a novel valve/pumping design and is fully capable of hand-free operation. These modules have been demonstrated to have a separation similar to our previous generation glass-based chips, which have previously proved the capability of genetic diagnosis. The integrated PCR module has demonstrated the concept of a CMOS compatible PCR system that is capable of mass-production. These discrete PCR modules are rapid prototypes. Using laser-based and milling machine-based rapid prototyping methods, the fabrication processes and module designs were developed. During this, the designs were studied through simulations and back-of-the-envelope (BOE) calculations. At the time of writing, the valving, PCR and CE modules have been successfully tested (with publications in print, in press and underway). In addition, a valving and CE combination has also been successfully demonstrated for a restriction fragment length polymorphism (RFLP) diagnostic and submitted for publication. All of these designs were intended to be developed in a manner that could be implemented in a PMMA chip, or on a future CMOS chip for greater cost reduction. This work has developed some of the key technologies for PCR-CE in a way that is scalable to such a CMOS system, notably with valves that can be used in a hybrid PMMA/CMOS system, and in testing a silicon based and robust temperature control system that could be implemented on CMOS.

Description

LC Subject Headings

Citation