Gaussian Laws on Drinfeld Modules

dc.contributor.authorKuo, Wentang
dc.contributor.authorLiu, Yu-Ru
dc.date.accessioned2023-10-03T15:10:07Z
dc.date.available2023-10-03T15:10:07Z
dc.date.issued2009
dc.description.abstractLet A = 𝔽q[T] be the polynomial ring over the finite field 𝔽q, k = 𝔽q(T) the rational function field, and K a finite extension of k. Let ϕ be a Drinfeld A-module over K of rank r. For a place 𝔓 of K of good reduction, write , where is the valuation ring of 𝔓 and its maximal ideal. Let P𝔓, ϕ(X) be the characteristic polynomial of the Frobenius automorphism of 𝔽𝔓 acting on a Tate module of ϕ. Let χϕ(𝔓) = P𝔓, ϕ(1), and let ν(χϕ(𝔓)) be the number of distinct primes dividing χϕ(𝔓). If ϕ is of rank 2 with , we prove that there exists a normal distribution for the quantity For r ≥ 3, we show that the same result holds under the open image conjecture for Drinfeld modules. We also study the number of distinct prime divisors of the trace of the Frobenius automorphism of 𝔽𝔓 acting on a Tate module of ϕ and obtain similar results.en
dc.identifier.urihttps://doi.org/10.1142/S1793042109002638
dc.identifier.urihttp://hdl.handle.net/10012/19998
dc.language.isoenen
dc.publisherWorld Scientificen
dc.relation.ispartofseriesInternational Journal of Number Theory;5(7)
dc.subjectDrinfeld modulesen
dc.subjectnormal distributionen
dc.titleGaussian Laws on Drinfeld Modulesen
dc.typeArticleen
dcterms.bibliographicCitationKUO, W., & LIU, Y.-R. (2009). Gaussian laws on Drinfeld modules. International Journal of Number Theory, 05(07), 1179–1203. https://doi.org/10.1142/s1793042109002638en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2009-gaussian-drinfeld.pdf
Size:
347.59 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: