A Prime Analogue of Roth's Theorem in Function Fields

dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorSpencer, Craig V.
dc.date.accessioned2023-10-03T15:13:52Z
dc.date.available2023-10-03T15:13:52Z
dc.date.issued2015
dc.description.abstractAbstract. Let Fq[t] denote the polynomial ring over the nite eld Fq, and let PR denote the subset of Fq[t] containing all monic irreducible polynomials of degree R. For non-zero elements r = (r1; r2; r3) of Fq satisfying r1 + r2 + r3 = 0, let D(PR) = Dr(PR) denote the maximal cardinality of a set AR PR which contains no non-trivial solution of r1x1 + r2x2 + r3x3 = 0 with xi 2 AR (1 i 3). By applying the polynomial Hardy-Littlewood circle method, we prove that D(PR) q jPRj=(log log log log jPRj).en
dc.description.sponsorshipNSERC Discovery Grant || NSA Young Investigator Grant, #H98230-10-1-0155, #H98230-12-1-0220, #H98230-14-1-0164.en
dc.identifier.urihttp://hdl.handle.net/10012/20004
dc.language.isoenen
dc.publisherSpringer New Yorken
dc.relation.ispartofseriesAdvances in the Theory of Numbers;
dc.subjectRoth's theoremen
dc.subjectfunction fieldsen
dc.subjectcircle methoden
dc.subjectirreducible polynomialsen
dc.titleA Prime Analogue of Roth's Theorem in Function Fieldsen
dc.typeBook Chapteren
dcterms.bibliographicCitationLiu, Y.-R. & Spencer, C.V. (2015). A Prime Analogue of Roth's Theorem in Function Fields. In A. Alaca; S. Alaca & K.S. Williams (Eds.), Advances in the Theory of Numbers: Proceedings of the Thirteenth Conference of the Canadian Number Theory Association. Springer New York.en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2015-prime-roth-ff.pdf
Size:
431.22 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: