Optimal Controller and Actuator Design for Nonlinear Parabolic Systems
dc.contributor.author | Edalatzadeh, M. Sajjad | |
dc.contributor.author | Morris, Kirsten | |
dc.date.accessioned | 2019-10-25T15:26:05Z | |
dc.date.available | 2019-10-25T15:26:05Z | |
dc.date.issued | 2019-10-08 | |
dc.description.abstract | Many physical systems are modeled by nonlinear parabolic differential equations, such as the Kuramoto-Sivashinsky (KS) equation. In this paper, the existence of a concurrent optimal controller and actuator design is established for semilinear systems. Optimality equations are provided. The results are shown to apply to optimal controller/actuator design for the Kuramoto-Sivashinsky equation and also nonlinear diffusion. | en |
dc.identifier.uri | http://hdl.handle.net/10012/15231 | |
dc.language.iso | en | en |
dc.subject | nonlinear systems | en |
dc.subject | distributed parameter systems | en |
dc.subject | optimal control | en |
dc.subject | actuators | en |
dc.title | Optimal Controller and Actuator Design for Nonlinear Parabolic Systems | en |
dc.type | Preprint | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Applied Mathematics | en |
uws.peerReviewStatus | Unreviewed | en |
uws.scholarLevel | Faculty | en |
uws.scholarLevel | Post-Doctorate | en |
uws.typeOfResource | Text | en |