UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Layer-by-layer self-assembly of nanofilatration membrane for water and wastewater treatment

dc.contributor.authorSun, Jingjing
dc.date.accessioned2015-04-29T14:54:52Z
dc.date.available2015-04-29T14:54:52Z
dc.date.issued2015-04-29
dc.date.submitted2015
dc.description.abstractIn this study, polyelectrolyte composite membranes were prepared using layer-by-layer (LbL) self-assembly of chitosan/poly(acrylic acid) (chitosan/PAA) on polyethersulfone (PES) substrates. These thin-film-composite (TFC) membranes were used for salt rejection. The performance of the chitosan/PAA composite membranes showed good separation performance for salt solutions. With an increase in the chitosan/PAA bilayers, the salt rejection of the membrane increased and permeation flux decreased, which indicated the growth of the polyelectrolyte thin film on PES substrates. By varying such preparation conditions as polyelectrolyte concentration, deposition time and the outermost layer in LbL assembly, membranes with different separation performances were obtained. Therefore, LbL assembly of polyelectrolytes can be used to tailor the membrane structure with the desired separation performances. Although the chitosan/PAA composite membranes possessed favorable salt retention, these membranes could not afford a long-term operation in salt solutions. Membrane swelling would take place during a long period of nanofiltration (NF) application. To improve the NF performance and stability of the CS/PAA composite membranes in salt solutions, two post-treatment methods (i.e., heat treatment and crosslinking) were used in membrane preparation. An improvement in the membrane selectivity was accomplished by increasing the heating temperature and duration. When the heating temperature reached 150℃, the salt rejection of membranes had markedly enhanced. A heat treatment time of 60 min seemed to be sufficient to produce membranes with high separation performance. In addition, the stability of membrane was also enhanced by the heat treatment. Chemical crosslinking of chitosan/PAA multilayers was also applied in membrane preparation process. Glutaraldehyde was utilized as a crosslinking agent for membrane modification of chitosan terminated composite membranes. The resulting membranes showed improved stability and salt rejection. A 23 factorial experimental design was used in this study to evaluate the main crosslinking effects (i.e., crosslinking temperature, crosslinking time, and glutaraldehyde concentration) and their interactions on the separation performance of the membrane. The crosslinking temperature, glutaraldehyde concentration, and their interaction showed more significant influence on membrane performance than other effects. Moreover, the stability of the chitosan/PAA composite membrane were enhanced considerably by crosslinking of membrane with glutaraldehyde.en
dc.identifier.urihttp://hdl.handle.net/10012/9285
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectNanofiltrationen
dc.subjectsalt rejectionen
dc.subjectpolyelectrolyteen
dc.subjectself-assemblyen
dc.subjectcrosslinkingen
dc.subjectchitosanen
dc.subjectglutaraldehydeen
dc.subjectfactorial designen
dc.subject.programChemical Engineeringen
dc.titleLayer-by-layer self-assembly of nanofilatration membrane for water and wastewater treatmenten
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentChemical Engineeringen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sun_Jingjing.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: