H-colouring Pt-free graphs in subexponential time
dc.contributor.author | Groenland, Carla | |
dc.contributor.author | Okrasa, Karolina | |
dc.contributor.author | Rzążewski, Paweł | |
dc.contributor.author | Scott, Alex | |
dc.contributor.author | Seymour, Paul | |
dc.contributor.author | Spirkl, Sophie | |
dc.date.accessioned | 2022-08-12T01:12:50Z | |
dc.date.available | 2022-08-12T01:12:50Z | |
dc.date.issued | 2019-08-31 | |
dc.description | The final publication is available at Elsevier via https://doi.org/10.1016/j.dam.2019.04.010 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
dc.description.abstract | A graph is called Pt-free if it does not contain the path on t vertices as an induced subgraph. Let H be a multigraph with the property that any two distinct vertices share at most one common neighbour. We show that the generating function for (list) graph homomorphisms from G to H can be calculated in subexponential time 2O (√tn log(n)) for n = |V (G)| in the class of Pt-free graphs G. As a corollary, we show that the number of 3-colourings of a Pt-free graph G can be found in subexponential time. On the other hand, no subexponential time algorithm exists for 4-colourability of Pt-free graphs assuming the Exponential Time Hypothesis. Along the way, we prove that Pt-free graphs have pathwidth that is linear in their maximum degree. | en |
dc.description.sponsorship | Supported by a Leverhulme Trust Research Fellowship.vSupported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563. | en |
dc.identifier.uri | https://doi.org/10.1016/j.dam.2019.04.010 | |
dc.identifier.uri | http://hdl.handle.net/10012/18530 | |
dc.language.iso | en | en |
dc.publisher | Elsevier | en |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | colouring | en |
dc.subject | Pt-free | en |
dc.subject | subexponential-time algorithm | en |
dc.subject | partition function | en |
dc.subject | path-decomposition | en |
dc.title | H-colouring Pt-free graphs in subexponential time | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Groenland, C., Okrasa, K., Rzążewski, P., Scott, A., Seymour, P., & Spirkl, S. (2019). H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics, 267, 184–189. https://doi.org/10.1016/j.dam.2019.04.010 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Combinatorics and Optimization | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- H-colouring Pt-free graphs in subexponential time.pdf
- Size:
- 210.44 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.47 KB
- Format:
- Item-specific license agreed upon to submission
- Description: