H-colouring Pt-free graphs in subexponential time

dc.contributor.authorGroenland, Carla
dc.contributor.authorOkrasa, Karolina
dc.contributor.authorRzążewski, Paweł
dc.contributor.authorScott, Alex
dc.contributor.authorSeymour, Paul
dc.contributor.authorSpirkl, Sophie
dc.date.accessioned2022-08-12T01:12:50Z
dc.date.available2022-08-12T01:12:50Z
dc.date.issued2019-08-31
dc.descriptionThe final publication is available at Elsevier via https://doi.org/10.1016/j.dam.2019.04.010 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractA graph is called Pt-free if it does not contain the path on t vertices as an induced subgraph. Let H be a multigraph with the property that any two distinct vertices share at most one common neighbour. We show that the generating function for (list) graph homomorphisms from G to H can be calculated in subexponential time 2O (√tn log(n)) for n = |V (G)| in the class of Pt-free graphs G. As a corollary, we show that the number of 3-colourings of a Pt-free graph G can be found in subexponential time. On the other hand, no subexponential time algorithm exists for 4-colourability of Pt-free graphs assuming the Exponential Time Hypothesis. Along the way, we prove that Pt-free graphs have pathwidth that is linear in their maximum degree.en
dc.description.sponsorshipSupported by a Leverhulme Trust Research Fellowship.vSupported by ONR grant N00014-14-1-0084 and NSF grant DMS-1265563.en
dc.identifier.urihttps://doi.org/10.1016/j.dam.2019.04.010
dc.identifier.urihttp://hdl.handle.net/10012/18530
dc.language.isoenen
dc.publisherElsevieren
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcolouringen
dc.subjectPt-freeen
dc.subjectsubexponential-time algorithmen
dc.subjectpartition functionen
dc.subjectpath-decompositionen
dc.titleH-colouring Pt-free graphs in subexponential timeen
dc.typeArticleen
dcterms.bibliographicCitationGroenland, C., Okrasa, K., Rzążewski, P., Scott, A., Seymour, P., & Spirkl, S. (2019). H-colouring Pt-free graphs in subexponential time. Discrete Applied Mathematics, 267, 184–189. https://doi.org/10.1016/j.dam.2019.04.010en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Combinatorics and Optimizationen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
H-colouring Pt-free graphs in subexponential time.pdf
Size:
210.44 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: