UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Synthesis, Characterization, and Reactivity of Tricarbastannatranes

dc.contributor.authorKavoosi, Azadeh
dc.date.accessioned2016-06-16T18:58:21Z
dc.date.available2017-06-17T04:50:06Z
dc.date.issued2016-06-16
dc.date.submitted2016-06
dc.description.abstractThe synthesis of a series of tricarbastannatrane complexes is described, and the structure of ionic triptych complexes [N(CH2CH2CH2)3Sn](BF4), [N(CH2CH2CH2)3Sn](SbF6), [N(CH2CH2CH2)3Sn]4[(SbF6)3Cl], [(N(CH2CH2CH2)3Sn)2OH][MeB(C6F5)3] [[N(CH2CH2CH2)3Sn]2Cl0.2F0.8][B[3,5-(CF3)2C6H3]4], and [(N(CH2CH2CH2)3Sn][allyl(B(C6F5)3] is established by NMR spectroscopy and X-ray crystallography. After demonstrating the Lewis acidity of tricarbastannatrane complexes toward various Lewis bases by NMR studies, the reactivity of tricarbastannatranes in conjugate addition to electrophilic alkenes was studied. Using alkyl-tricarbastannatranes as nucleophiles, the first B(C6F5)3-promoted conjugate addition to benzylidene Meldrum’s acids was carried out under mild conditions. The mechanism of the addition has been investigated by deuterium labeling experiments. It was shown that unsaturated carbonyl compounds can be efficiently activated by the Lewis acidic tricarbastannatrane. Furthermore, the structure of the reaction intermediates was determined by NMR and mass spectroscopy. The reactivity of tricarbastannatranes was further investigated by the addition of iPr-tricarbastannatrane to activated double bonds. In the presence of catalytic amounts of B(C6F5)3, iPr-tricarbastannatrane acts as a hydride source to generate [HB(C6F5)3]–, and reduces olefins, namely benzylidene 1,3-dimethylbarbituric acids. Detailed mechanistic studies on the reduction reaction were performed by NMR spectroscopy and mass spectrometry. Conjugate additions of isopropyl group to the benzylidene 1,3-dimethylbarbituric acids along with the reduced products were observed. To expand the applications of tricarbastannatranes in carbon–carbon bond formation reactions, allyl-tricarbastannatrane was added to carbon–carbon double bonds that bear strongly electron-withdrawing substituents under mild reaction conditions. The tin enolate species, which is generated by the addition of allyl-tricarbastannatrane to benzylidene 1,3-dimethylbarbituric acid, is characterized by multinuclear NMR spectroscopy.en
dc.identifier.urihttp://hdl.handle.net/10012/10553
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectTricarbastannatranesen
dc.subjectLewis aciden
dc.subjectReductionen
dc.subjectAlkylationen
dc.subjectAllylationen
dc.titleSynthesis, Characterization, and Reactivity of Tricarbastannatranesen
dc.typeDoctoral Thesisen
uws-etd.degreeDoctor of Philosophyen
uws-etd.degree.departmentChemistryen
uws-etd.degree.disciplineChemistryen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorFillion, Eric
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kavoosi_Azadeh.pdf
Size:
6.75 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections