On Convolution Squares of Singular Measures

dc.contributor.authorChan, Vincent
dc.date.accessioned2010-08-25T15:09:12Z
dc.date.available2010-08-25T15:09:12Z
dc.date.issued2010-08-25T15:09:12Z
dc.date.submitted2010
dc.description.abstractWe prove that if $1 > \alpha > 1/2$, then there exists a probability measure $\mu$ such that the Hausdorff dimension of its support is $\alpha$ and $\mu*\mu$ is a Lipschitz function of class $\alpha-1/2$.en
dc.identifier.urihttp://hdl.handle.net/10012/5369
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectconvolution squareen
dc.subjectsingular measureen
dc.subjectLipschitzen
dc.subjectHausdorff dimensionen
dc.subject.programPure Mathematicsen
dc.titleOn Convolution Squares of Singular Measuresen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentPure Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thesis.pdf
Size:
540.63 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
247 B
Format:
Item-specific license agreed upon to submission
Description: