Age Differences in the Situation Awareness and Takeover Performance in a Semi-Autonomous Vehicle Simulator
Loading...
Date
2022-04-26
Authors
Murzello, Yovela
Advisor
Cao, Shi
Samuel, Siby
Samuel, Siby
Journal Title
Journal ISSN
Volume Title
Publisher
University of Waterloo
Abstract
Research on young and elderly drivers indicates a high crash risk amongst these drivers in comparison to other age groups of drivers. Young drivers have a greater propensity to adopt a risky driving style and behaviors associated with poor road safety. On the other hand, age-related declines can negatively impact the performance of older drivers on the road leading to crashes and risky maneuvers. Thus, autonomous vehicles have been suggested to improve the road safety and mobility of younger and older drivers. However, the difficulty of manually taking over control from semi-autonomous vehicles might vary in different driving conditions, particularly in those that are more challenging. Hence, the present study aims to examine the effect of road geometry and scenario, by investigating young, middle-aged and older drivers' situation awareness (SA) and takeover performance when driving a semi-autonomous vehicle simulator on a straight versus a curved road on a highway and an urban non-highway road when engaged in a secondary distracting task.
Due to the impact of COVID-19, data from only the young (n=24) and middle-aged (n=24) adults were collected and analyzed. Participants drove a Level 3 semi-autonomous simulator vehicle and performed a secondary non-driving related task in the distracted conditions. The results indicated that the participants had significantly longer hazard perception times on the curved roads and autopilot drives, but there was no significant effect of driver age and road type. Their Situation Awareness Global Assessment Technique (SAGAT) scores were higher in the highway scenarios, on the straight roads, and in the manual drive compared to the autopilot with distraction drive. Young drivers were also found to have significantly higher SAGAT scores than middle-aged drivers. While there was a significant interaction effect between road type and road geometry on takeover time, there was no significant main effect of road geometry, drive type and driver’s age. For the takeover quality metrics, road geometry and drive type had an effect on takeover performance. The resulting acceleration was higher for the straight road and in the autopilot drives, and the lane deviation was higher on the curved road and autopilot only drive compared to the autopilot with distraction drive. There was no significant main effect of road type and driver’s age on resulting acceleration and lane deviation.
Overall, while there were age differences in some aspects of SA, young and middle-aged drivers did not differ in their takeover performance. The participants' SA was impacted by the road type and geometry and their takeover quality varied according to the road geometry and drive type. The outcomes of this research will aid vehicle manufacturing companies that are developing Level 3 semi-autonomous vehicles with appropriately designing the lead time of the takeover request to meet the driving style and abilities of younger and middle-aged drivers. This will also help to improve road safety by reducing the crash rate of younger drivers.
Description
Keywords
human factors, semi-autonomous vehicles, takeover perfomance, human–automation interaction, driving performance