Privately Constrained Testable Pseudorandom Functions

dc.contributor.authorPawlega, Filip
dc.date.accessioned2018-09-20T14:46:23Z
dc.date.available2019-09-21T04:50:09Z
dc.date.issued2018-09-20
dc.date.submitted2018-09-13
dc.description.abstractPrivately Constrained Pseudorandom Functions allow a PRF key to be delegated to some evaluator in a constrained manner, such that the key’s functionality is restricted with respect to some secret predicate. Variants of Privately Constrained Pseudorandom Func- tions have been applied to rich applications such as Broadcast Encryption, and Secret-key Functional Encryption. Recently, this primitive has also been instantiated from standard assumptions. We extend its functionality to a new tool we call Privately Constrained Testable Pseudorandom functions. For any predicate C, the holder of a secret key sk can produce a delegatable key constrained on C denoted as sk[C]. Evaluations on inputs x produced using the constrained key differ from unconstrained evaluations with respect to the result of C(x). Given an output y evaluated using sk[C], the holder of the unconstrained key sk can verify whether the input x used to produce y satisfied the predicate C. That is, given y, they learn whether C(x) = 1 without needing to evaluate the predicate themselves, and without requiring the original input x. We define two inequivalent security models for this new primitive, a stronger indistinguishability- based definition, and a weaker simulation-based definition. Under the indistinguishability- based definition, we show the new primitive implies Designated-Verifier Non-Interactive Zero-Knowledge Arguments for NP in a black-box manner. Under the simulation-based definition, we construct a provably secure instantiation of the primitive from lattice as- sumptions. We leave the study of the gap between definitions, and discovering techniques to reconcile it as future work.en
dc.identifier.urihttp://hdl.handle.net/10012/13840
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectcryptographyen
dc.titlePrivately Constrained Testable Pseudorandom Functionsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.comment.hiddenSigned restriction form has been submitted to CS grad department.en
uws.contributor.advisorGorbunov, Sergey
uws.contributor.advisorJao, David
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Pawlega_Filip.pdf
Size:
601.81 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: