UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Motion with Moisture: Creating Passive Dynamic Envelope Systems Using the Hygroscopic Properties of Wood Veneer

dc.contributor.authorAugustin, Nicola
dc.date.accessioned2018-01-24T16:08:45Z
dc.date.available2018-01-24T16:08:45Z
dc.date.issued2018-01-24
dc.date.submitted2018-01-22
dc.description.abstractThis thesis presents research into the creation of an autonomously responsive envelope system capable of adaptation to variation in relative humidity through the use of wood veneer and its hygroscopic material properties. As an alternative strategy to the extensive, energy-intensive, technological systems characteristic of contemporary responsive envelopes, dynamic systems using hygroscopic materials are both low-cost and low-tech while also producing adaptation without consumable energy input or external control. Produced is a meteorosensitive, semi-permeable, passive facade that aims to enhance both the physical and physiological comfort of interior spaces through moderating airflow and light infiltration. The facade is an assemblage of expanding, hygroscopic tubes, formally based on the principles of fluid dynamics outlined by Bernoulli’s principle and functionally implemented by the Venturi tube, to orchestrate airflow from exterior to interior. The performance of the hygroscopic facade is tested using computational fluid dynamics software and is compared against the performance of a standard Venturi tube assembled in the same manner. The results of this testing show that despite a cross sectional difference from the standard Venturi tube, the hygroscopic mechanism is capable of increasing airflow into interior spaces through the purposeful creation of a low pressure zone within the mechanism. Optimizing the performance of the mechanism is done through a biomimetic transfer of both formal and functional intelligence from the biological precedents of the Ipomoea flower and the conifer cone as found by Ross Koning, Wouter van Doorn et al., and Kahye Song et al. As well as, material studies performed by Steffen Reichert, and Artem Holstov et al. are traced to understand the performance and characteristics of the wood veneer as a bilayer composite that allows the mechanism to undergo repeated transformations and achieve variability of expansion from one end of the mechanism to the other. The direct integration of biological precedents within architecture asserts that building materials can be seen as productive entities, passively attuned to the natural rhythms and variability of the external environment, while maintaining flexibility for functional implementation as self-sufficient, adaptive facades.en
dc.identifier.urihttp://hdl.handle.net/10012/12953
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectHygroscopicen
dc.subjectFacadeen
dc.subjectPassiveen
dc.subjectResponsiveen
dc.titleMotion with Moisture: Creating Passive Dynamic Envelope Systems Using the Hygroscopic Properties of Wood Veneeren
dc.typeMaster Thesisen
uws-etd.degreeMaster of Architectureen
uws-etd.degree.departmentSchool of Architectureen
uws-etd.degree.disciplineArchitectureen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorBeesley, Philip
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Augustin_Nicola.pdf
Size:
15.37 MB
Format:
Adobe Portable Document Format
Description:
No Thumbnail Available
Name:
Hygroscopic_Mechanism_Motion.mp4
Size:
8.05 MB
Format:
Unknown data format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: