Single Commodity Flow Algorithms for Lifts of Graphic and Cographic Matroids

dc.contributor.authorStuive, Leanne
dc.date.accessioned2013-01-23T14:38:58Z
dc.date.available2013-01-23T14:38:58Z
dc.date.issued2013-01-23T14:38:58Z
dc.date.submitted2013
dc.description.abstractConsider a binary matroid M given by its matrix representation. We show that if M is a lift of a graphic or a cographic matroid, then in polynomial time we can either solve the single commodity flow problem for M or find an obstruction for which the Max-Flow Min-Cut relation does not hold. The key tool is an algorithmic version of Lehman's Theorem for the set covering polyhedron.en
dc.identifier.urihttp://hdl.handle.net/10012/7225
dc.language.isoenen
dc.pendingfalseen
dc.publisherUniversity of Waterlooen
dc.subjectdiscrete optimizationen
dc.subjectmatroid flowsen
dc.subject.programCombinatorics and Optimizationen
dc.titleSingle Commodity Flow Algorithms for Lifts of Graphic and Cographic Matroidsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentCombinatorics and Optimizationen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Stuive_Leanne.pdf
Size:
731.56 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
250 B
Format:
Item-specific license agreed upon to submission
Description: