UWSpace staff members will be away from May 5th to 9th, 2025. We will not be responding to emails during this time. If there are any urgent issues, please contact GSPA at gsrecord@uwaterloo.ca. If any login or authentication issues arise during this time, please wait until UWSpace Staff members return on May 12th for support.
 

Clustering behaviour in networks with time delayed all-to-all coupling

Loading...
Thumbnail Image

Date

2017-08-30

Authors

Wang, Zhen

Advisor

Campbell, Sue Ann
Campbell, Sue Ann

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Networks of coupled oscillators arise in a variety of areas. Clustering is a type of oscillatory network behavior where elements of a network segregate into groups. Elements within a group oscillate synchronously, while elements in different groups oscillate with a fixed phase difference. In this thesis, we study networks of N identical oscillators with time delayed, global circulant coupling with two approaches. We first use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to determine model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We then perform stability and bifurcation analysis to the original system of delay differential equations with symmetry. We first study the existence of Hopf bifurcations induced by coupling time delay, and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to two specfi c examples: a network of FitzHugh-Nagumo neurons with diffusive coupling and a network of Morris-Lecar neurons with synaptic coupling. In the case studies, we show how time delays in the coupling between neurons can give rise to switching between different stable cluster solutions, coexistence of multiple stable cluster solutions and solutions with multiple frequencies.

Description

Keywords

neural network, time delay, symmetric cluster oscillation, stability analysis, bifurcation

LC Subject Headings

Citation