The Unrestricted Variant of Waring's Problem in Function Fields
dc.contributor.author | Liu, Yu-Ru | |
dc.contributor.author | Wooley, Trevor D. | |
dc.date.accessioned | 2023-10-03T14:54:10Z | |
dc.date.available | 2023-10-03T14:54:10Z | |
dc.date.issued | 2007-09 | |
dc.description | Copyright © 2007 Adam Mickiewicz University | en |
dc.description.abstract | Let J k q [t] denote the additive closure of the set of k th powers in the polynomial ring Fq[t], defined over the finite field Fq having q elements. We show that when s>k + 1 and q>k 2k+2 , then every polynomial in J k q [t] is the sum of at most s k th powers of polynomials from Fq[t]. When k is large and s>( 4 3 + o(1))k log k , the same conclusion holds without restriction on q . Refinements are offered that depend on the characteristic of Fq . | en |
dc.description.sponsorship | NSERC Discvoery Grant || NSF grant, DMS-0601367. | en |
dc.identifier.uri | https://doi.org/10.7169/facm/1229619654 | |
dc.identifier.uri | http://hdl.handle.net/10012/19986 | |
dc.language.iso | en | en |
dc.publisher | Adam Mickiewicz University | en |
dc.relation.ispartofseries | Functiones et Approximatio Commentarii Mathematici;37(2) | |
dc.subject | function fields | en |
dc.subject | Waring's Problem | en |
dc.title | The Unrestricted Variant of Waring's Problem in Function Fields | en |
dc.type | Article | en |
dcterms.bibliographicCitation | Liu, Y.-R., & Wooley, T. D. (2007). The unrestricted variant of Waring’s problem in function fields. Functiones et Approximatio Commentarii Mathematici, 37(2). https://doi.org/10.7169/facm/1229619654 | en |
uws.contributor.affiliation1 | Faculty of Mathematics | en |
uws.contributor.affiliation2 | Pure Mathematics | en |
uws.peerReviewStatus | Reviewed | en |
uws.scholarLevel | Faculty | en |
uws.typeOfResource | Text | en |