The Unrestricted Variant of Waring's Problem in Function Fields

dc.contributor.authorLiu, Yu-Ru
dc.contributor.authorWooley, Trevor D.
dc.date.accessioned2023-10-03T14:54:10Z
dc.date.available2023-10-03T14:54:10Z
dc.date.issued2007-09
dc.descriptionCopyright © 2007 Adam Mickiewicz Universityen
dc.description.abstractLet J k q [t] denote the additive closure of the set of k th powers in the polynomial ring Fq[t], defined over the finite field Fq having q elements. We show that when s>k + 1 and q>k 2k+2 , then every polynomial in J k q [t] is the sum of at most s k th powers of polynomials from Fq[t]. When k is large and s>( 4 3 + o(1))k log k , the same conclusion holds without restriction on q . Refinements are offered that depend on the characteristic of Fq .en
dc.description.sponsorshipNSERC Discvoery Grant || NSF grant, DMS-0601367.en
dc.identifier.urihttps://doi.org/10.7169/facm/1229619654
dc.identifier.urihttp://hdl.handle.net/10012/19986
dc.language.isoenen
dc.publisherAdam Mickiewicz Universityen
dc.relation.ispartofseriesFunctiones et Approximatio Commentarii Mathematici;37(2)
dc.subjectfunction fieldsen
dc.subjectWaring's Problemen
dc.titleThe Unrestricted Variant of Waring's Problem in Function Fieldsen
dc.typeArticleen
dcterms.bibliographicCitationLiu, Y.-R., & Wooley, T. D. (2007). The unrestricted variant of Waring’s problem in function fields. Functiones et Approximatio Commentarii Mathematici, 37(2). https://doi.org/10.7169/facm/1229619654en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
23-published.pdf
Size:
241.15 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: