Around the closure of the set of commutators of idempotents in B(H): Biquasitriangularity and factorisation

dc.contributor.authorMarcoux, Laurent
dc.contributor.authorRadjavi, Heydar
dc.contributor.authorZhang, Yuanhang
dc.date.accessioned2024-01-31T16:32:01Z
dc.date.available2024-01-31T16:32:01Z
dc.date.issued2023-04-15
dc.descriptionThe final publication is available at Elsevier via https://doi.org/10.1016/j.jfa.2023.109854. © 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en
dc.description.abstractIn this paper, we continue our study of the norm-closure of the set CEof bounded linear operators acting on a complex, infinite-dimensional, separable Hilbert space Hwhich may be expressed as the commutator of two idempotent operators. In particular, we identify which biquasitriangular operators belong to the norm-closure clos(CE)of CE, and we exhibit an index obstruction to membership in clos(CE). Finally, we consider factorisations of bounded linear operators on Has sums and products of elements in CEand related sets.en
dc.description.sponsorshipNSERC (Canada) || National Natural Science Foundation of China, 12071174.en
dc.identifier.urihttps://doi.org/10.1016/j.jfa.2023.109854
dc.identifier.urihttp://hdl.handle.net/10012/20325
dc.language.isoenen
dc.publisherElsevieren
dc.relation.ispartofseriesJournal of Functional Analysis;284(8); 109854
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectcommutatorsen
dc.subjectidempotentsen
dc.subjectbiquasitriangularen
dc.subjectindexen
dc.subjectfactorisationen
dc.titleAround the closure of the set of commutators of idempotents in B(H): Biquasitriangularity and factorisationen
dc.typeArticleen
dcterms.bibliographicCitationMarcoux, Laurent W., Radjavi, H., & Zhang, Y. (2023). Around the closure of the set of commutators of idempotents in B(H): Biquasitriangularity and factorisation. Journal of Functional Analysis, 284(8), 109854. https://doi.org/10.1016/j.jfa.2023.109854en
uws.contributor.affiliation1Faculty of Mathematicsen
uws.contributor.affiliation2Pure Mathematicsen
uws.peerReviewStatusRevieweden
uws.scholarLevelFacultyen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0022123623000113-main.pdf
Size:
640.45 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.47 KB
Format:
Item-specific license agreed upon to submission
Description: