UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Advanced research on Lithium-Sulfur battery : studies of lithium polysulfides.

dc.contributor.authorCabelguen, Pierre-Etienne
dc.date.accessioned2013-10-03T15:52:47Z
dc.date.available2014-07-03T05:00:15Z
dc.date.issued2013-10-03T15:52:47Z
dc.date.submitted2014
dc.description.abstractThis thesis was devised as a fundamental study of the Li-S system by the use of 7Li Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR), X-ray Absorption Near- Edge Structure (XANES), and Non-Resonant Inelastic X-ray Scattering (NRIXS). The first part of this thesis reports the first evidence of a stable solid-phase intermediate between elemental sulfur (α-S8) and Li2S, Li2S6, which can be used to understand deeper Li-S battery. The second part of this thesis is based on operando XANES measurements made in the Argonne Photon Source (APS).Linear combination fit (LCF) analyses are performed to interpret the data; and, noticeably, the distinction between short-chain and long-chain polysulfides can be made due to the use of proper reference materials. The results reveal the first detailed observation of typical sulfur redox chemistry upon cycling, showing how sulfur fraction (under-utilization) and sulfide precipitation impact capacity. It also gives new insights into the differences between the charge and discharge mechanisms, resulting in the hysteresis of the cycling profile. Operando XANEs were also performed on het-treated material, which exhibits a particular electrochemical signature, which has never explained. After a preliminary electrochemical study by potentiodynamic cycling with galvanostatic acceleration (PCGA), operando XANES measurements at the sulfur K-edge are performed on heat-treated PCNS. Noticeably, the difference in the XANES signatures of the pristine and the recharged state shows the irreversible process that occurs during the first discharges. At last, electrolytes are investigated by the compilation of quantitative physico-chemical parameters – viscosity, ionic conductivity, and solubility of Li2S and Li2S6 – on novel class of solvents that are glymes with non-polar groups and acetonitrile (ACN) complexed with LiTFSI. 1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (HFE) is chosen to decrease their viscosities. (ACN)2:LiTFSI attracts particular attention because of the particularly low Li2Sn solubility and. Its good electrochemical performance when mixed with 50 vol% HFE. Operando XANES proves the formation of polysulfides in this electrolyte, although constrains imposed by this novel electrolyte to the XANES experiment complicate the data analysis. The low energy feature evolution shows a more progressive mechanism involved in this electrolyte, which could be linked to the particularly low Li2Sn solubilityen
dc.description.embargoterms1 yearen
dc.identifier.urihttp://hdl.handle.net/10012/7994
dc.language.isoenen
dc.pendingtrueen
dc.publisherUniversity of Waterlooen
dc.subjectLithium-sulfuren
dc.subjectpolysulfideen
dc.subjectXANESen
dc.subjectoperandoen
dc.subjectbatteryen
dc.subjectelectrolyteen
dc.subject.programChemistryen
dc.titleAdvanced research on Lithium-Sulfur battery : studies of lithium polysulfides.en
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentChemistryen
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cabelguen_PierreEtienne.pdf
Size:
3.48 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
261 B
Format:
Item-specific license agreed upon to submission
Description:

Collections