Bichromatic dressing of Rydberg atoms and on the correctness of many-mode Floquet theory

dc.contributor.authorPoertner, Adam
dc.date.accessioned2020-01-20T21:17:25Z
dc.date.available2020-01-20T21:17:25Z
dc.date.issued2020-01-20
dc.date.submitted2020-01-15
dc.description.abstractMany-mode Floquet theory [T.-S. Ho, S.-I. Chu, and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983)] was designed as an extension of Floquet theory suitable for solving the time-dependent Schrodinger equation with multiple periodicities, however its limitations are not well understood. I show that for two commensurate frequencies (integer multiples of a common frequency), many-mode Floquet theory always produces an exact expression for the time evolution of a system, despite only part of the eigenvalue spectrum being directly relevant. I show that the rest of the spectrum corresponds to eigenvalues of the same system but at other values of the relative phase between the bichromatic field components. I show by using a Floquet perturbative analysis that dressing a Rydberg atom with a bichromatic field with frequency components ω2 and ω1, such that ω2 = 2ω1, can induce a permanent dipole moment (first order energy shift with dc electric field) without a dc bias field. With frequency ω1 = 2π5.997GHz, ω2 = 2ω1 and field strengths of Eac1 = 0.1 V/cm and Eac2 = 0.05 V/cm, a permanent dipole moment of magnitude 44.06 MHz/(V/cm) is induced in the dressed 65s1/2 state of ⁸⁵Rb. The permanent dipole moment depends on the relative phase between the fields and can be made to be zero at certain values of phase.en
dc.identifier.urihttp://hdl.handle.net/10012/15510
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleBichromatic dressing of Rydberg atoms and on the correctness of many-mode Floquet theoryen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentPhysics and Astronomyen
uws-etd.degree.disciplinePhysicsen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorMartin, James
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Poertner_Adam.pdf
Size:
815.05 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: