UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Recovery of Volatile Aroma Compounds by Membranes

dc.contributor.authorDavari, Susan
dc.date.accessioned2024-05-03T20:02:16Z
dc.date.available2024-05-03T20:02:16Z
dc.date.issued2024-05-03
dc.date.submitted2024-04-18
dc.description.abstractThis research investigates the potential application of poly(ether block amide) (PEBA) membranes for the separation of volatile aroma compounds from wine and the effect of non-volatile components on the separation performance using the pervaporation process. The study examined the selective retrieval of two aroma compounds (4-ethyl guaiacol and 4-ethyl phenol) from binary dilute aqueous solutions through pervaporation utilizing the PEBA 2533 membrane. It was observed that this membrane effectively recovers hydrophobic aroma compounds. The influence of feed concentration and temperature on aroma recovery was also analyzed. The performance of PEBA 2533 for aroma recovery was assessed, and experimental data were analyzed using a batch pervaporation model. It was discovered that both the flux of aroma compounds and their selectivity were notably influenced by the concentration of aroma compounds in the feed. The permeation flux and their selectivity in separating the volatile aroma compound in a binary solution followed the sequence of 4-ethyl phenol > 4-ethyl guaiacol, showing an inverse relationship with their molecular size. Generally, the permeation flux of aroma was found to be directly proportional to the concentration of aroma compounds in the solution within the tested concentration range (10-110 ppm). The impact of temperature on permeation flux followed an Arrhenius-type relationship and 4-EG with larger molecular size showed higher apparent activation energy than 4-EP and water. It was observed that the recovery of 4-Ethyl guaiacol from its dilute aqueous solution was affected by non-volatile wine components (sugar, yeast, and salt) and alcohol. Specifically, the presence of glucose as a model sugar and NaCl as a model salt in the feed solution did not notably affect the pervaporative performance of 4-EG, maybe because of their low contents in the feed mixture and low interactions with aroma. The addition of agar initially increased the permeate flux of 4-EG due to its insolubility and ability to absorb water molecules, boosting the concentration of 4-EG and enhancing the driving force. However, at higher agar concentrations, precipitation formed a thick layer of swollen agar in the tank, trapping 4-EG molecules and reducing their concentration in the solution. This led to a peak flux followed by a decline, reaching a maximum turning point at a specific agar concentration. Finally, the presence of ethanol as a model alcohol in the binary solution of 4-ethyl guaiacol was found to significantly reduce the permeation of 4-ethyl guaiacol. However, the total flux of the mixture considerably increased. The presence of ethanol affected the partitioning and activity coefficients of the components in the mixture as well as membrane swelling and plasticization, which ultimately affected the solubility and diffusivity properties of the membrane.en
dc.identifier.urihttp://hdl.handle.net/10012/20538
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectpervaporationen
dc.subjectPEBA membraneen
dc.subjectvolatile aroma compoundsen
dc.subjectred wineen
dc.subjectethyl phenolsen
dc.subjectnon-volatile compoundsen
dc.titleRecovery of Volatile Aroma Compounds by Membranesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Applied Scienceen
uws-etd.degree.departmentChemical Engineeringen
uws-etd.degree.disciplineChemical Engineeringen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms0en
uws.contributor.advisorFeng, Xianshe
uws.contributor.affiliation1Faculty of Engineeringen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Davari_Susan.pdf
Size:
2.08 MB
Format:
Adobe Portable Document Format
Description:
Recovery of Volatile Aroma Compounds by Membranes
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: