Style Recognition in Music with Context Free Grammars and Kolmogorov Complexity

dc.comment.adminJordan Hale updated abstract per GSPA request on 2020-03-12en
dc.contributor.advisorBrown, Daniel
dc.contributor.authorMondol, Tiasa
dc.date.accessioned2020-03-11T14:59:11Z
dc.date.available2020-03-11T14:59:11Z
dc.date.issued2020-03-11
dc.date.submitted2020-03-05
dc.description.abstractThe Kolmogorov Complexity of an object is incomputable. But built in its structure is a way to specify description methods of an object that is computable in some sense. Such a description method then can be exploited to quantify the bits of information needed to generate the object from scratch. We show that Context-Free Grammars form such a viable description method to specify an object and the size of the grammar can be used to estimate the Kolmogorov Complexity. We use such estimation in approximating the Information Distance between two musical strings. We also show that such distance measure in music can be used to recognize the genre, composer and style and also for music classification.en
dc.identifier.urihttp://hdl.handle.net/10012/15689
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.relation.urihttps://github.com/Tiasa/StyleRecognitioninMusic.giten
dc.subjectkolmogorov complexityen
dc.subjectmusic information retrievalen
dc.subjectcontext free grammaren
dc.subjectalgorithmic information complexityen
dc.subjectconditional informationen
dc.subject.lcshArtificial intelligenceen
dc.subject.lcshMusical applicationsen
dc.subject.lcshComputer sound processingen
dc.subject.lcshMusical analysisen
dc.subject.lcshMusical notationen
dc.subject.lcshMusicen
dc.subject.lcshData processingen
dc.subject.lcshKolmogorov complexityen
dc.titleStyle Recognition in Music with Context Free Grammars and Kolmogorov Complexityen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorBrown, Daniel
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Mondol_Tiasa.pdf
Size:
7.11 MB
Format:
Adobe Portable Document Format
Description:
Final Draft

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: