A Human-Machine Framework for the Classification of Phonocardiograms

dc.contributor.authorCallaghan, William
dc.date.accessioned2018-04-20T18:27:42Z
dc.date.available2018-04-20T18:27:42Z
dc.date.issued2018-04-20
dc.date.submitted2018
dc.description.abstractIn this thesis, we present and evaluate a framework for combining machine learning algo- rithms, crowd workers, and experts in the classification of heart sound recordings. The development of a hybrid human-machine framework for heart sound recordings is moti- vated by the past success in utilizing human computation to solve problems in medicine as well as the use of human-machine frameworks in other domains. We describe the methods that decide when and how to escalate the analysis of heart sound recordings to different resources and incorporate their decision into a final classification. We present and discuss the results of the framework which was tested with a number of different machine classi- fiers and a group of crowd workers from Amazon’s Mechanical Turk. We also provide an evaluation of how crowd workers perform in various different heart sound analysis tasks, and how they compare with machine classifiers. In addition, we investigate how machine and human analysis are effected by different types of heart sounds and provide a strategy for involving experts when these methods are uncertain. We conclude that the use of a hybrid framework is a viable method for heart sound classification.en
dc.identifier.urihttp://hdl.handle.net/10012/13147
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.titleA Human-Machine Framework for the Classification of Phonocardiogramsen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorLaw, Edith
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Callaghan_William.pdf
Size:
2.23 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.08 KB
Format:
Item-specific license agreed upon to submission
Description: