UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

ClaferMPS: Modeling and Optimizing Automotive Electric/Electronic Architectures Using Domain-Specific Languages

dc.contributor.authorKhalilov, Eldar
dc.date.accessioned2017-01-23T19:51:32Z
dc.date.available2017-01-23T19:51:32Z
dc.date.issued2017-01-23
dc.date.submitted2017-01-03
dc.description.abstractModern automotive electric/electronic (E/E) architectures are growing to the point where architects can no longer manually predict the effects of their design decisions. Thus, in addition to applying an architecture reference model to decompose their architectures, they also require tools for synthesizing and evaluating candidate architectures during the design process. Clafer is a modeling language, which has been used to model variable multi-layer, multi-perspective automotive system architectures according to an architecture reference model. Clafer tools allow architects to synthesize optimal candidates and evaluate effects of their design decisions. However, since Clafer is a general-purpose structural modeling language, it does not help the architects in building models conforming to the given architecture reference model. In this work, we present ClaferMPS, a set of extensible languages and IDE for modeling E/E architectures using Clafer. First, we present an E/E architecture domain-specific language (DSL) built on top of Clafer, which embodies the reference model and which guides the architects in correctly applying the reference model. We then evaluate the DSL and its implementation by modeling two existing automotive systems, which were originally modeled in plain Clafer. The evaluation showed that by using the DSL, an evaluator obtained correct models by construction because the DSL helped prevent typical errors that are easy to make in plain Clafer. The evaluator was also able to synthesize and evaluate candidate architectures as with plain Clafer. Finally, we demonstrate extensibility capabilities of ClaferMPS. Our implementation is built on top of the JetBrains Meta Programming System, which supports language modularization and composition, multi-stage transformations and projectional editing. As a result, ClaferMPS allows third parties to seamlessly add extensions to both Clafer and the E/E architecture DSL without invasive changes. To illustrate this approach, we consider the Robot Operating System (ROS) communications infrastructure, a case study, which is outside the scope of the existing reference model. We show how the E/E architecture DSL can be adapted to the new domain using MPS language modularization and composition.en
dc.identifier.urihttp://hdl.handle.net/10012/11249
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectarchitectureen
dc.subjectmodelingen
dc.subjectoptimizationen
dc.subjectsynthesisen
dc.subjectlanguage engineeringen
dc.subjectdomain-specific languageen
dc.subjectDSLen
dc.subjectMPSen
dc.subjectMeta-Programming Systemen
dc.titleClaferMPS: Modeling and Optimizing Automotive Electric/Electronic Architectures Using Domain-Specific Languagesen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Mathematicsen
uws-etd.degree.departmentDavid R. Cheriton School of Computer Scienceen
uws-etd.degree.disciplineComputer Scienceen
uws-etd.degree.grantorUniversity of Waterlooen
uws.contributor.advisorCzarnecki, Krzysztof
uws.contributor.affiliation1Faculty of Mathematicsen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Khalilov_Eldar.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.17 KB
Format:
Item-specific license agreed upon to submission
Description: