UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

LASS-ICP-MS collection of trace element and 87Sr/86Sr isotope data using a novel uneven distribution of sample material for otolith microchemistry

dc.contributor.authorEdgeworth, Ivan
dc.date.accessioned2022-01-26T14:43:48Z
dc.date.available2023-01-27T05:50:06Z
dc.date.issued2022-01-26
dc.date.submitted2022-01-24
dc.description.abstractUnderstanding the behaviour and movement of fish populations is crucial to developing plans to properly manage fisheries, and to predict effects of ongoing environmental change. In northern regions, physically tracking fish populations is difficult and expensive for researchers to accomplish at spatial scales that are relevant for populations. Otoliths (fish ear bones) are comprised of metabolically inert aragonite that stores elemental and isotopic data throughout the lifetime of a fish in seasonal growth bands centered around a nucleus. Previous LA-ICP-MS studies have utilized trace element and isotopic data gathered from otoliths to investigate fish migration patterns, discriminate stocks, spawning and rearing sites, and reconstruct characteristics of habitats used, such as relative temperature or pH. Otolith structures can be small and fragile, depending on the species of fish, and may only have room for a single laser transect. Most previous LA-ICP-MS studies have measured isotopic or trace element data across a single transect, limiting the amount of information that can be acquired from a single otolith. This thesis focuses on the development of a new analytical technique that simultaneously quantifies trace element and strontium isotope ratios from a single line transect. A novel, uneven distribution of material in a split-stream configuration couples the laser ablation system with two mass spectrometers. Long-term accuracy assessments of trace element concentrations indicate that measured values are within 5 – 10% of accepted/preferred values of standard reference and in-house reference materials. Isotopic precision varied with respect to laser diameter but is generally fit-for-purpose for otolith studies. The utility of this innovative split stream technique is demonstrated by analyzing three transects on otoliths from two species of fish (lake trout (Salvelinus namaycush) and arctic char (Salvelinus alpinus)). Transects of lake trout and arctic char (25µm and 40µm laser diameter, respectively) were analyzed and assessed, and results indicated that larger laser diameters yield more accurate and precise data without sacrificing significant spatial resolution.en
dc.identifier.urihttp://hdl.handle.net/10012/17980
dc.language.isoenen
dc.pendingfalse
dc.publisherUniversity of Waterlooen
dc.subjectgeochemistryen
dc.subjectotolithen
dc.subjectlaser ablationen
dc.subjectsplit-streamen
dc.titleLASS-ICP-MS collection of trace element and 87Sr/86Sr isotope data using a novel uneven distribution of sample material for otolith microchemistryen
dc.typeMaster Thesisen
uws-etd.degreeMaster of Scienceen
uws-etd.degree.departmentEarth and Environmental Sciencesen
uws-etd.degree.disciplineEarth Sciencesen
uws-etd.degree.grantorUniversity of Waterlooen
uws-etd.embargo.terms1 yearen
uws.contributor.advisorYakymchuk, Chris
uws.contributor.advisorSwanson, Heidi
uws.contributor.affiliation1Faculty of Scienceen
uws.peerReviewStatusUnrevieweden
uws.published.cityWaterlooen
uws.published.countryCanadaen
uws.published.provinceOntarioen
uws.scholarLevelGraduateen
uws.typeOfResourceTexten

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Edgeworth_Ivan.pdf
Size:
4.61 MB
Format:
Adobe Portable Document Format
Description:
MSc. Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.4 KB
Format:
Item-specific license agreed upon to submission
Description: