Show simple item record

dc.contributor.authorKetata, Mohamed Aymen 13:20:29 (GMT) 13:20:29 (GMT)
dc.description.abstractChanging the development environment can have severe impacts on the system behavior such as the execution-time performance. Since it can be costly to migrate a software application, engineers would like to predict the performance parameters of the application under the new environment with as little effort as possible. In this work, we concentrate on model-driven development and provide a methodology to estimate the execution-time performance of application models under different toolchains. Our approach has low cost compared to the migration effort of an entire application. As part of the approach, we provide methods for characterizing model-driven applications, an algorithm for generating application-specific microbenchmarks, and results on using different methods for estimating the performance. In the work, we focus on SCADE as the development toolchain and use a Cruise Control and a Water Level application as case studies to confirm the technical feasibility and viability of our technique.en
dc.publisherUniversity of Waterloo
dc.subjectModel based developmenten
dc.subjectAutomated Code Generationen
dc.titlePerformance Prediction Upon Toolchain Migration in Model-Based Softwareen
dc.typeMaster Thesisen
dc.subject.programElectrical and Computer Engineeringen and Computer Engineeringen
uws-etd.degreeMaster of Applied Scienceen

Files in this item


This item appears in the following Collection(s)

Show simple item record


University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages