Show simple item record

dc.contributor.authorJohnson, Daniel
dc.date.accessioned2015-01-30 15:00:23 (GMT)
dc.date.available2015-05-31 05:30:16 (GMT)
dc.date.issued2015-01-30
dc.date.submitted2015
dc.identifier.urihttp://hdl.handle.net/10012/9158
dc.description.abstractA three-dimensional (3D) predictive golfer model can be a valuable tool for investigating the golf swing and designing new clubs. A forward dynamic model for simulating golfer drives is presented, which includes: (1) a four degree of freedom golfer model, (2) a flexible shaft model based on Rayleigh beam theory, (3) an impulse-momentum impact model, (4) and a spin rate controlled ball trajectory model. The input torques for the golfer model are provided by parameterized joint torque generators that have been designed to mimic muscular inputs. These joint torques are optimized to produce the longest ball carry distance for a given set of golf club design parameters. The flexible shaft model allows for continuous bending in the transverse directions, axial twisting of the club and variable shaft stiffness along its length. The completed four-part model is used for examining the following parameters of interest in club design by performing simulation experiments: clubhead mass, clubhead centre of mass location, clubhead moment of inertia, shaft flexibility, and clubhead and shaft aerodynamics. Analysis of the experiments led to the following recommendations for golf club design: 1. The clubhead mass should continue to be around 200g. 2. The centre of mass of the clubhead should be as close to the face as possible. 3. Shaft flexibility should be tuned for an individual golfer, depending on their particular swing. 4. Clubhead and shaft aerodynamic drag have a significant effect on the ball carry and clubhead orientation, and should be minimized during the club design process. Finally, suggestions are made for future research which can be performed in this area.en
dc.language.isoenen
dc.publisherUniversity of Waterlooen
dc.subjectgolf driveen
dc.subjectforward dynamicsen
dc.subjectmodellingen
dc.subjectbiomechanicsen
dc.subjectthree-dimensionalen
dc.subjectmultibodyen
dc.subjectflexible beamen
dc.titleA Three-Dimensional Forward Dynamic Model of the Golf Swingen
dc.typeMaster Thesisen
dc.pendingfalse
dc.subject.programSystem Design Engineeringen
dc.description.embargoterms4 monthsen
uws-etd.degree.departmentSystems Design Engineeringen
uws-etd.degreeMaster of Applied Scienceen
uws.typeOfResourceTexten
uws.peerReviewStatusUnrevieweden
uws.scholarLevelGraduateen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


UWSpace

University of Waterloo Library
200 University Avenue West
Waterloo, Ontario, Canada N2L 3G1
519 888 4883

All items in UWSpace are protected by copyright, with all rights reserved.

DSpace software

Service outages