UWSpace is currently experiencing technical difficulties resulting from its recent migration to a new version of its software. These technical issues are not affecting the submission and browse features of the site. UWaterloo community members may continue submitting items to UWSpace. We apologize for the inconvenience, and are actively working to resolve these technical issues.
 

Port-based teleportation of continuous quantum variables

Loading...
Thumbnail Image

Date

2014-08-27

Authors

Boisselle, Jason

Journal Title

Journal ISSN

Volume Title

Publisher

University of Waterloo

Abstract

Quantum teleportation allows to transmit quantum information using classical information and entanglement only. Port-based teleportation is a variation of this procedure that involves simpler recovery operations to obtain the transmitted quantum information. This provides significant advantages in different applications such as instantaneous non-local computation. We study port-based teleportation for continuous variable systems. We connect this problem to hypothesis testing, generalizing a result already known for finite-dimensional systems. Similarly, we present a relation between entanglement fidelity and average fidelity valid for both finite and infinite-dimensional systems. Finally, we present a protocol that reduces port-based teleportation for infinite-dimensional systems to port-based teleportation of finite-dimensional systems which allows us to show that the former task is, at least in principle, possible with a finite amount of resources.

Description

Keywords

Teleportation, Port-based teleportation, Gaussian states, Quantum optics

LC Keywords

Citation